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Résumé. — En 1984, Deligne a montré que pour tout nombre premier p,
la réduction modulo p de la diagonale d’une série formelle algébrique de
plusieurs variables à coefficients entiers est algébrique sur le corps des fonc-
tions rationnelles à coefficients dans Fp. De plus, il a suggéré que les degrés
d’algébricité dp de ces fonctions devaient crôıtre au plus polynomialement
en fonction de p. Dans cet article, nous présentons une nouvelle preuve du
théorème de Deligne qui est élémentaire et permet d’établir la première borne
générale polynomiale avec un degré raisonnable.

Abstract. — In 1984, Deligne proved that for any prime number p, the
reduction modulo p of the diagonal of a multivariate algebraic power series
with integer coefficients is algebraic over the field of rational functions with
coefficients in Fp. Moreover, he conjectured that the algebraic degrees dp of
these functions should grow at most polynomially in p. In this article, we
provide a new and elementary proof of Deligne’s theorem, which yields the
first general polynomial bound on dp with an explicit and reasonable degree.

1. Introduction

Given a ring R and a multivariate power series

f(t) =
∑
i∈Nn

a(i)ti ∈ R[[t]] ,

Key words and phrases. — Diagonals of algebraic power series, algebraicity modulo p,
Christol’s theorem.
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where we write i = (i1, . . . , in), a(i) = a(i1, . . . , in), t = (t1, . . . , tn), and

ti = ti11 · · · tinn , the diagonal of f is the univariate power series

∆(f)(t) :=

+∞∑
i=0

a(i, . . . , i)ti ∈ R[[t]] .

When p is an ideal of R, the reduction modulo p of f is given by

f|p(t) :=
∑
i∈Nn

(a(i) mod p)ti ∈ (R/p)[[t]] .

A particularly interesting case arises when R = Q, the field of algebraic
numbers, and the power series f is algebraic over Q(t). In this setting, ∆(f)
satisfies a linear differential equation of Picard-Fuchs type and belongs to the
class of Siegel’s G-functions. We refer the reader to [AB13, Chr15] and
the references therein for further discussion of these connections. Moreover,
such power series frequently appear in enumerative combinatorics (see [Sta99,
Chap. 6], [BMM10] and [Mel21, Chap. 4]). Additionally, diagonalization is
closely related to integration (see [Del84] and [Chr15, Sec. 3]), and in general,
∆(f) is transcendental over Q(t) (see, for instance, [AB13]).

By contrast, when R = k is a field of characteristic p > 0, and f is a
multivariate rational power series, Furstenberg [Fur67] proved the following
remarkable result: the diagonal ∆(f) is always algebraic over k(t). Later,
Deligne [Del84] provided a geometric proof of Furstenberg’s theorem and
extended it to the case where f is algebraic. He also noted an intriguing con-
nection between these two seemingly opposite situations through reductions
modulo p. Indeed, the relation ∆(f)|p = ∆(f|p) holds in general. It follows
from Deligne’s theorem that if f ∈ Z[[t]] is algebraic, then ∆(f)|p remains al-
gebraic over Fp(t) for all primes p. This naturally raises the question of how
the algebraic degree dp of ∆(f)|p evolves as p varies. Deligne’s proof relies on
heavy arithmetic geometry machinery and proceeds inductively on the num-
ber n of variables. In [Del84], he suggested that a direct proof would be more
satisfactory and could yield a polynomial bound of the form dp = O(pN ).

Deligne’s work has been highly influential, inspiring several authors [DL87,
SW88, Har88, Sal87, Sal86], who independently provided a direct and
elementary proof of his theorem. However, this proof resulted in a very weak
nonpolynomial bound on dp. More recently, Bell and the first author [AB13]
established the first general polynomial bound, but their proof relies on an
inductive argument, leading to an excessively large value of N in the worst
case. A brief discussion of these results is provided in Section 1.1.

Our main contribution is a new, direct, and elementary proof of Deligne’s
theorem, which yields the first polynomial bound dp < pN with a reasonable
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value for N , expressed in terms of the complexity of the underlying algebraic
function.

The complexity of an algebraic power series f ∈ k[[t]] is traditionally mea-
sured in terms of its degree and height. Since the ring k[t, y] is a unique
factorization domain, there exists a polynomial E(t, y) ∈ k[t, y] satisfying
E(t, f) = 0, which is minimal for divisibility. Moreover such a polynomial is
unique up to multiplication by a nonzero constant in k. The degree of f is
defined as the degree in y of E(t, y); equivalently, it is the degree of the field
extension k(t)(f) of k(t). For the height, we consider two natural definitions:
the total height of f is the total degree in t of E(t, y) (where the total de-
gree of the monomial ti is i1 + · · · + in), while its partial height is the tuple
h = (h1, . . . , hn) where, for each i, hi is the degree in ti of E(t, y).

We recall that any element f in the algebraic closure of Fp(t) is annihilated
by a linearized polynomial, i.e., a polynomial P (X) ∈ Fp(t)[X] of the form

c0X + c1X
p + · · ·+ cNX

pN , cN ̸= 0 .

The integer N is called the p-degree of P . It easily follows that the Galois
conjugates of f are all contained in an Fp-vector space of dimension N . Con-
sequently, the Galois group of f (i.e., the Galois group of the extension of
Fp(t) generated by f and all its Galois conjugates) canonically embeds, up to
conjugacy, into GLN (Fp).

Our main result is stated as follows.

Theorem 1.1. — Let f ∈ Z[[t]] be an algebraic power series with degree d,
total height h, and partial height (h1, . . . , hn). Set

(1.1) N := (d+ 1) ·min

{
n∏

i=1

(hi + 1)−
n∏

i=1

hi,

(
n+ h

n

)
−
(
h

n

)}
.

Then, for every prime number p, ∆(f)|p is annihilated by a linearized polyno-

mial of p-degree at most N . In particular, ∆(f)|p has degree at most pN − 1
over Fp(t).

Let us make a few comments about this result.

Remark 1.2. — It follows from Theorem 1.1 and the preceding remark, that,
for every prime p, the Galois group of ∆(f)|p embeds, up to conjugacy, into
GLN (Fp). The key point here is thatN does not depend on p. This observation
naturally leads to more refined questions concerning uniformity with respect
to p. In particular, one may ask whether the Galois groups of ∆(f)|p arise by
reduction modulo p from a unique group, or a finite number of groups, defined
in characteristic zero. In a recent preprint [CFVM25], Caruso, Fürnsinn, and
Vargas-Montoya investigate this problem.
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Remark 1.3. — We will deduce Theorem 1.1 from a slightly more precise
statement (see Theorem 3.3) in which the bound N is expressed in terms of
the number of integer points in the Newton polytope of E(t, y). Beyond the
significant improvements this refined version may induce in some cases, it also
suggests a potential link between the optimal bound N and geometric invari-
ants attached to the algebraic hypersurface of equation E(t, y) = 0. Indeed,
after the work of Baker [Bak93], Hodge [Hod29] and Khovanskii [Kho78],
it is known that the geometric genus of the aforementioned hypersurface is
bounded from above by the number of integer points in the Newton poly-
tope of E(t, y) and that equality holds generically. A natural question is then
whether the degree of the minimal polynomial of ∆(f)|p is always at most

pg+O(1) where g is the geometric genus of the underlying hypersurface. When
n = 1, Bridy’s approach [Bri17] provides a positive answer to this expectation;
in full generality, however, the question remains open.

Let k be a field of characteristic zero, and let f(t) ∈ k[[t]] be algebraic over
k(t). Then there exists a finitely generated Z-algebra Z such that f(t) ∈ Z[[t]],
and, for any maximal ideal p of Z, the quotient Z/p is a finite field (see,
e.g., [AB13, p. 967]). In this framework, we obtain, as a direct consequence
of Theorem 3.1, the following generalization of Theorem 1.1, in the spirit of
[AB13, Thm. 1.4]. A particularly interesting case occurs when k is a number
field and Z = Ok,p, the localization of the ring of integers Ok of k at p.

Theorem 1.4. — Let k be a feld of characteristic zero, Z ⊂ k be a finitely
generated Z-algebra, and f ∈ Z[[t]] be algebraic over k(t) with degree d, total
height h, and partial height (h1, . . . , hn). Then, for every maximal ideal p of Z,
∆(f)|p is annihilated by a linearized polynomial with coefficients in (Z/p)(t)
of p-degree at most N , where p is the characteristic of Z/p and N is defined
as in (1.1). In particular, ∆(f)|p has degree at most pN − 1 over (Z/p)(t).

1.1. Comparison with previous works. — The proof of Furstenberg’s
theorem presented in [Fur67] is direct and elementary, yielding a polyno-
mial upper bound dp < pN when d = 1 and n is arbitrary, with N having
a value similar to that in Theorem 1.1 in this case. Deligne [Del84, p. 140]
subsequently treated the case n = 2 and arbitrary d, obtaining the bound
dp = O(pN ), where N is expressed in terms of geometric quantities associated
with the underlying algebraic power series. Another approach, which traces
its origin to [CKMFR80], relies on the fact that any algebraic power series is
annihilated by a linearized polynomial. This method has been used indepen-
dently by several authors [DL87, SW88, Har88] (and also [Sal87, Sal86]
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in some special cases) to give an elementary proof of Deligne’s theorem. Ha-
rase [Har89] (see also [AB12]) later showed that this approach yields a doubly

exponential bound, namely dp = O(pp
N
), for arbitrary d and n.

As noted earlier, the first general polynomial bound, i.e., in O(pN ), was
established in [AB13], where the proof provides an effective N that depends

only on the degree d and the total height h of f (1). However, before this
paper, the best upper bound for N was a nonelementary primitive recursive
bound –precisely, a tower of exponentials with height (at least) linear in the
number n of variables. The reason is that, when d > 1, the value of N
becomes exceedingly large due to a recursive procedure involving resultants.
For instance, even when the number of variables is n = 2, the estimate for
N = N(2, d, h) in [AB13, Theorem 6.1] takes the form

22
24

hd2

.

This can be seen by carefully analyzing the quantities appearing in the proof
of Theorem 6.1, together with the estimates of Lemmas 6.1, 6.2 and 6.3
in [AB13]. Indeed, N(2, d, h) grows like N(1, d1, h1) ∼ 4h1d

3
1, where d1 grows

like dd0M
2

0 and h1 grows like dd0·M
2dM

2

0

0 , where M ∼ 4hd3 and d0 ∼ d4
hd2

, and
these estimates altogether imply that log2 log2 log2 log2(h1) grows like 2hd2.

The approach we adopt here is analogous to that in [AB13], but instead of
expressing algebraic power series as diagonals of rational functions, we express
them as formal residues of rational functions. This formulation, which was
first employed in [BCCD19] for univariate algebraic power series, is a variant
of Furstenberg’s formula analogous to Lagrange’s formula for the residues of
rational functions with simple poles (see Lemma 2.6). The primary advantage
of this method is that it avoids any inductive process.

Beyond diagonals of algebraic power series, other significant families of G-
functions in Q[[t]] have algebraic reductions modulo p (cf. [ABD19, VM21]).
Moreover, the property of algebraicity modulo p provides a powerful tool
for establishing results on the transcendence and algebraic independence of
power series in characteristic zero (cf. [WS89, AGBS98, AB13, ABD19,
VM24]).

1.2. Organization of the article. — This article is a condensed version
of an unpublished preprint made available on arXiv in 2023 (cf. [ABC23]).
In Section 2, we establish Theorem 2.3, which provides a sharp, quantitative
multivariate extension of Christol’s theorem (see [Chr79, CKMFR80]) con-
cerning algebraic power series with coefficients in finite fields. Our result also

(1)Using the approach from [AB13], it is also possible to deduce the existence of such a
polynomial bound from another result in [DL87], but with an ineffective constant N .
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generalizes its extension to perfect ground fields of positive characteristic, ob-
tained independently in [DL87, SW88, Har88]. In Section 3, we derive our
quantitative version of Deligne’s theorem as a consequence of Theorem 2.3,
from which Theorem 1.1 follows directly. We emphasize that Theorem 2.3
is of independent interest and has several further applications, discussed in
detail in [ABC23], including the following:

(i) For a multivariate algebraic power series with coefficients in a finite
field Fq, it provides an upper bound on the minimal number of states
required for a q-automaton to generate its sequence of coefficients. This
generalizes a result of Bridy [Bri17] to the multidimensional setting (see
[ABC23, Sec. 4]).

(ii) For two multivariate algebraic power series over an arbitrary field of
characteristic p, it establishes an upper bound on the algebraic de-
gree of their Hadamard product and other related products. This
significantly improves the doubly exponential bounds that follow from
[DL87, SW88, Har88] and were made explicit by Harase [Har89] (see
[ABC23, Sec. 6]).

(iii) It provides an efficient algorithm for computing the coefficient of a given
multivariate algebraic power series in Fq[[t]] at a specified multi-index.
The power series is encoded by its minimal polynomial over Fq(t) along
with a sufficient number of initial coefficients to ensure uniqueness,
Again, this improves significantly upon previously known results (see
[ABC23, Sec. 7]).

2. A sharper multivariate Christol theorem

Let k be a perfect field of characteristic p > 0. Then the Frobenius endo-
morphism F, which maps x to xp, is an automorphism of k. Let t = (t1, . . . , tn)
be indeterminates, and define K0 := k(t), R := k[[t]] and K := Frac(R), the
field of fractions of R. The Frobenius map F extends naturally to K as a field
homomorphism by setting F(ti) = tpi , for 1 ≤ i ≤ n, so that for a power series

f :=
∑

i∈Nn a(i)ti ∈ k[[t]], we have

F(f) =
∑
i∈Nn

i=(i1,...,in)

a(i)ptpi ∈ k[[t]] .

We let K⟨p⟩ denote the image of K by F, so that F defines an isomorphism
between K and K⟨p⟩. Then K is a K⟨p⟩-vector space of dimension pn, a
basis being given by all monomials of the form tr := tr11 · · · trnn , with r :=
(r1, . . . , rn) ∈ {0, . . . , p − 1}n. Thus, every f ∈ K has a unique expansion of
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the form

(2.1) f =
∑

r∈{0,...,p−1}n
trfr , where fr ∈ K⟨p⟩.

Definition 2.1. — For every r ∈ {0, . . . , p− 1}n, the section operator Sr is
the map from K into itself defined by

(2.2) Sr(f) := F−1(fr) .

For a power series f :=
∑

i∈Nn a(i)ti ∈ k[[t]], we have

Sr(f) =
∑
i∈Nn

i=(i1,...,in)

a(pi1 + r1, . . . , pin + rn)
1/pti ∈ k[[t]] .

We let Ωn denote the monoid generated by all section operators under com-
position.

The section operators are also sometimes referred to as Cartier operators
(see, for instance, [AB13]). Recall that they are k-linear and satisfy, for all
f, g ∈ K, the relation

(2.3) Sr(fF(g)) = Sr(f)g .

Moreover, Equality (2.1) can be equivalently written as

f =
∑

r∈{0,...,p−1}n
trF(Sr(f)) ,

for all f ∈ K.

Definition 2.2. — The Newton polytope (or, Newton polyhedron) NP(A) of
a multivariate polynomial

A :=
∑
i∈Nn

j∈N

ai,jt
iyj ∈ k[t, y]

is defined as the convex hull in Rn+1 of the tuples (i, j) such that ai,j ̸= 0.

The main result of this section is stated as follows.

Theorem 2.3. — Let k be a perfect field of characteristic p and let t =
(t1, . . . , tn). Let A(t, y) be a nonzero polynomial in k[t, y], and let f ∈ k[[t]]
satisfy the algebraic relation A(t, f) = 0. Define

C := NP(A) + (−1, 0]n+1 .

Then, there exists a k-vector space W ⊂ k[[t]] of dimension at most

Card(C ∩ Nn+1)
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which contains f and is invariant under the action the monoid Ωn of all section
operators.

Remark 2.4. — The plus sign in the definition of C refers to the Minkowski
sum. In Theorem 2.3, the field k must be perfect for the section operators
to be well-defined; however, this does not present a real limitation. Indeed,
replacing an arbitrary field of characteristic p by its perfect closure does not
affect our results (cf. Proposition 3.4).

In the case where k is a finite field, it follows that the orbit of f under Ωn

is finite, which implies that the sequence of coefficients of f is generated by
a finite p-automaton. Consequently, Theorem 2.3 extends and refines Chris-
tol’s theorem. Furthermore, Theorem 2.3 carries a geometric flavor (cf. Re-
mark 1.3), analogous to the more recent result established by Bridy [Bri17] in
the case where k is a finite field and n = 1 (see [ABC23, Sec. 4] for a detailed
discussion).

2.1. Preliminary results. — We begin by establishing three auxiliary re-
sults: Lemmas 2.5 and 2.6, and Proposition 2.7. These results correspond, re-
spectively, to natural extensions in our framework of Lemma 2.4, Lemma 2.3,
and Proposition 2.5 from [BCCD19].

2.1.1. Section operators on K((T )). — Consider a new indeterminate T . Then
F extends to a field homomorphism from K((T )) into itself by setting F(T ) =
T p. We let K((T ))⟨p⟩ denote the image of K((T )) under F. As before, K((T )) is

aK((T ))⟨p⟩-vector space of dimension pn+1, with a basis given by all monomials
of the form trT s, where r ∈ {0, . . . , p − 1}n and 0 ≤ s ≤ p − 1. However, for
our purposes, it will be more convenient to replace this standard basis with a
more suitable one, adapted to a given f ∈ R.

Lemma 2.5. — For any f ∈ R, the family

Bf := (tr(f + T )s)(r,s)∈{0,...,p−1}n+1

is a basis of K((T )) as a K((T ))⟨p⟩-vector space.

Proof. — First, we observe that Bf is a generating family. Indeed, we can
obtain trT s as a linear combination of tr(f + T )i, for 0 ≤ i ≤ s. This follows
from

T s = (T + f − f)s =
s∑

i=0

(
s

i

)
(−f)s−i(T + f)i .

Since Bf has the same cardinality as the basis (trT s)(r,s)∈{0,...,p−1}n+1 , it is

also a basis of K((T )).
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It follows that, given f ∈ R, every x ∈ K((T )) has a unique expansion of
the form

(2.4) x =
∑

r∈{0,...,p−1}n
tr

p−1∑
s=0

(f + T )sxf,r,s , where xf,r,s ∈ K((T ))⟨p⟩.

For every r ∈ {0, . . . , p − 1}n and s ∈ {0, . . . , p − 1}, we define the section
operator Sf,r,s, from K((T )) into itself, by

(2.5) Sf,r,s(x) := F−1(xf,r,s) .

One readily verifies that, for all x, y ∈ K((T )),

Sf,r,s(xy
p) = Sf,r,s(xF(y)) = Sf,r,s(x)y ,

for every r ∈ {0, . . . , p − 1}n and s ∈ {0, . . . , p − 1}. This definition and the
above identity are analogous to Definition 2.1 and Equation (2.3).

2.1.2. A variant of Furstenberg’s formula. — We define the residue map res
from K((T )) to K by setting

res

(∑
n≥ν

anT
n

)
:= a−1 .

Given a polynomial A ∈ K[y], we let Ay denote its derivative with respect
to y. The following key lemma is inspired by [Fur67, Prop. 2] and analogous
to Lagrange’s formula for the residues of rational functions with simple poles.

Lemma 2.6. — Let f ∈ K and A(y) ∈ K[y]. Assume that A(f) = 0 and
Ay(f) ̸= 0. Then, for all P ∈ K[y], one has

res

(
P (f + T )

A(f + T )

)
=

P (f)

Ay(f)
·

Proof. — Let U, V ∈ K[y] such that V (0) = 0 and Vy(0) ̸= 0. Thus, we can
express V as V =

∑r
n=1 any

n with a1 ̸= 0. It follows that

U(T )

V (T )
=

1

T
·
(

U(T )

a1 + a2T + · · ·+ arT r−1

)
and consequently,

res

(
U(T )

V (T )

)
=
U(0)

a1
=
U(0)

Vy(0)
·

The result follows by applying the above equality to U = P (f + T ) and
V = A(f + T ).
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2.1.3. Section operators and residues. — The next result establishes a fun-
damental commutation relation between taking residues and applying section
operators. It is reminiscent of a result of Cartier involving the so-called Cartier
operator [Car57, Th. 4] (see also [Bri17, Sec. 3]).

Proposition 2.7. — For any f ∈ R and r ∈ {0, . . . , p−1}n, the following
commutation relation holds over K((T )):

Sr ◦ res = res ◦ Sf,r,p−1 .

Proof. — Let x ∈ K((T )). By Equations (2.4) and (2.5), we have

x =
∑

r∈{0,...,p−1}n
tr

p−1∑
s=0

(f + T )s F(Sf,r,s(x)) .

Hence, we obtain that

(2.6) res(x) =
∑

r∈{0,...,p−1}n
tr

p−1∑
s=0

res
(
(f + T )s F(Sf,r,s(x))

)
.

Since F(Sf,r,s(x)) ∈ K((T ))⟨p⟩, its support (that is, the set of indices corre-
sponding to nonzero coefficients of F(Sf,r,s(x)) viewed as a Laurent series in
the variable T ) is contained in pZ. Therefore, we have

res
(
(f + T )s F(Sf,r,s(x))

)
= 0 for 0 ≤ s ≤ p− 2 ,

while, for s = p− 1,

res
(
(f + T )p−1 F(Sf,r,s(x))

)
= res

(
T p−1 F(Sf,r,s(x))

)
= F

(
res
(
Sf,r,p−1(x)

))
.

Substituting this into Equation (2.6), we obtain

res(x) =
∑

r∈{0,...,p−1}n
tr F

(
res
(
Sf,r,p−1(x)

))
.

Finally, applying (2.1) and (2.2) with f = res(x), we deduce that

Sr ◦ res(x) = res ◦ Sf,r,p−1(x) ,

as desired.

2.2. Proof of Theorem 2.3. — Let E(t, y) ∈ k[t, y] denote the minimal
polynomial of f over k(t), normalized such that its coefficients are globally
coprime.

Lemma 2.8. — The polynomial E(t, y) is separable with respect to y. In
particular, f is a simple root of E(t, y) with respect to y.
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Proof. — Since E(t, y) is defined as the minimal polynomial, it suffices to
prove that E(t, y) is not of the form F (t, yp) for some polynomial F (t, z) ∈
k[t, z]. We proceed by contradiction, assuming that E(t, y) = F (t, yp) for
some F (t, z) ∈ k[t, z]. We can write

F (t, z) = a0(t) + a1(t)z + · · ·+ am(t)zm

with ai(t) ∈ k[t] and am(t) ̸= 0. Let r ∈ {0, . . . , p−1}n. Applying the section
operator Sr to the identity F (t, fp) = 0, we obtain

Sr
(
a0(t)

)
+ Sr

(
a1(t)

)
f + · · ·+ Sr

(
am(t)

)
fm = 0 .

Since am(t) is nonzero, there must exist an index r for which Sr(am(t)) ̸= 0.
For such an r, we obtain a nonzero polynomial annihilating f with y-degree
smaller than the y-degree of E. This contradicts the minimality of E.

Proof of Theorem 2.3. — Let Ey denote the partial derivative of E with re-
spect to y. By Lemma 2.8, we have Ey(t, f) ̸= 0. Furthermore, since A
annihilates f , it must be a multiple of E; that is, we can write A = E · F for
some F ∈ k[t, y]. Let J be the interval (−1, 0] and define C ′ := NP(E)+Jn+1.

We claim that the k-vector space

W :=

{
P (t, f)

Ey(t, f)
: P ∈ k[t, y], NP(P ) ⊂ C ′

}
⊂ K

contains f and is invariant under the action of Ωn. The fact that f ∈ W
follows from the observation that NP(yEy) ⊂ NP(E) ⊂ C ′. Now, consider a
tuple r ∈ {0, 1, . . . , p−1}n along with a polynomial P ∈ k[t, y] whose Newton
polytope is a subset of C ′. We define U := P · Ep−1, and let Q ∈ k[t, y] be
defined by

(2.7) Q(t, f + T ) := Sf,r,p−1(U(t, f + T )) ∈ K .

By combining Lemma 2.6 and Proposition 2.7, we obtain:

Sr

(
P (t, f)

Ey(t, f)

)
= Sr ◦ res

(
P (t, f + T )

E(t, f + T )

)
(2.8)

= res ◦ Sf,r,p−1

(
P (t, f + T )

E(t, f + T )

)
= res

(
Q(t, f + T )

E(t, f + T )

)
=

Q(t, f)

Ey(t, f)
·

To establish our claim, it just remains to prove that NP(Q) ⊂ C ′. We recall
the following standard fact about Newton polytopes: the formation of Newton
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polytopes is compatible with products. Specifically, for A,B ∈ k[t, y], we have
the relation

NP(AB) = NP(A) + NP(B) .

Using this property, we can derive the following:

NP(U) ⊂ (p−1)·NP(E) + C ′ = p·NP(E) + Jn+1.

Now, let (i, j) be a tuple of exponents belonging to the support of Q, i.e., for
which the coefficient in Q in front of tiyj is nonzero. From the definition of
Sf,r,p−1, it follows that (pi+ r, pj + p− 1) must lie in NP(U). Dividing by p

and defining I := (−1
p , 0], we obtain(
i+ 1

pr, j +
p−1
p

)
∈ NP(E) + In+1 .

Thus, we conclude that

(i, j) ∈ NP(E) + In+1 +
{(

−1
pr,−

p−1
p

)}
⊂ NP(E) + Jn+1 = C ′ .

Finally, we have shown that NP(Q) ⊂ C ′, as desired.
Clearly W is spanned by the fractions of the form tif j/Ey(t, f), where

(i, j) ∈ C ′ ∩ Nn+1. Hence, the dimension of W is bounded from above by the
cardinality of this set. Furthermore, we observe that C = NP(F ) +C ′, where
F is nonzero. Since NP(F ) is the Newton polytope of a nonzero polynomial,
it must intersect Nn+1. Therefore, C contains a translate of C ′ by an element
with nonnegative integer coefficients. As a result, the cardinality of C ∩Nn+1

is at least that of C ′ ∩ Nn+1, and we conclude that

dimkW ≤ Card(C ′ ∩ Nn+1) ≤ Card(C ∩ Nn+1) ,

as desired.

3. Diagonals

By combining Theorem 2.3 with Propositions 5.1 and 5.2 of [AB13], we
immediately obtain an effective version of Deligne’s theorem: given an alge-
braic power series f ∈ k[[t]] of degree d and total height h, its diagonal ∆(f)
has degree at most pN (and height at most NpN ), where N is explicitly given
by

N := (d+ 1) ·
(
n+ h

n

)
.
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3.1. An effective version of Deligne’s theorem. — In this section, we
establish a refinement of the result stated above, from which Theorem 1.1
follows directly.

Theorem 3.1. — Let k be an arbitrary field of characteristic p. Let f ∈ k[[t]]
be an algebraic power series with degree d, total height h, and partial height
h = (h1, . . . , hn). Set

(3.1) N := (d+ 1) ·min

{
n∏

i=1

(hi + 1)−
n∏

i=1

hi,

(
n+ h

n

)
−
(
h

n

)}
.

Then, ∆(f) is annihilated by a linearized polynomial with coefficients in k(t)
of p-degree at most N . In particular, ∆(f) has degree at most pN − 1 over
k(t).

Theorem 3.1 will be deduced from Theorem 3.3, a slightly more general
result stated in terms of generalized diagonals and Newton polytopes.

3.2. Generalized diagonals. — In what follows, we introduce a slight gen-
eralization of the diagonalization process. We continue with the previous no-
tation: k is a perfect field of characteristic p and K0 = k(t), R = k[[t]], and
K = Frac(R) are defined as in Section 2. Let G be a subgroup of Zn such
that the quotient Zn/G has no torsion. We define K0,G as the subfield of K0

generated by k and by the monomials ti with i ∈ G. Similarly, we define RG

as the k-subalgebra of R consisting of series of the form
∑

i∈G a(i)t
i. Since

G is abstractly isomorphic to Zm for some integer m ≤ n, the rings K0,G and
RG are isomorphic to k(x1, . . . , xm) and k[[x1, . . . , xm]], respectively.

Definition 3.2. — We keep the notation introduced above. The G-diagonal
is the operator defined by

∆G : R −→ RG∑
i∈Nn

a(i)ti 7→
∑
i∈G

a(i)ti

with the convention that a(i) = 0 for i ̸∈ Nn.

When G is the subgroup generated by (1, . . . , 1), the ring RG is isomor-
phic to k[[t]] via the map t1 · · · tn 7→ t, and the diagonal operator ∆G reduces
to the usual diagonal operator ∆. However, the more general construction
of ∆G offers greater flexibility and allows for partial diagonals, as considered
in [DL87]. For instance, if G is the subgroup generated by (1, . . . , 1) together
with the standard basis vectors ei = (0, . . . , 0, 1, 0, . . . , 0) (where 1 is in i-th
position) for i ∈ {1, . . . ,m}, then

RG ≃ k[[t1, . . . , tm, x]]
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and we have

∆G

(∑
i∈Nn

a(i)ti

)
=

∑
(i1,...,im)∈Nm

k∈N

a(i1, . . . , im, k, . . . , k) t
i1
1 · · · timm xk .

More generally, one can verify that ∆G is K0,G-linear.

Theorem 3.3. — Let k be an arbitrary field of characteristic p, and let G be
a subgroup of Zn such that Zn/G has no torsion. Let GR be the vector subspace
of Rn generated by G, and let πG : Rn+1 → (Rn/GR)×R denote the canonical
projection. Let A(t, y) ∈ k[t, y] and let f ∈ k[[t]] satisfy the algebraic relation
A(t, f) = 0. Define C as the convex subset of Rn+1 given by

C := NP(A) +
(
GR × (−1, 0]

)
.

Then, ∆G(f) is annihilated by a linearized polynomial with coefficients in K0,G

of p-degree at most N , where N := Card
(
πG(C ∩ Nn+1)

)
.

Recall that if k is a field of characteristic p, then adjoining to k all the pr-th
roots (r ≥ 1) of all the elements of k yields a perfect field, called the perfect
closure of k, which we denote by kp. Before proving Theorem 3.3, we recall
the following elementary result (see [ABC23, Prop. 3.1] for a proof).

Proposition 3.4. — Let k be an arbitrary field of characteristic p and let kp
be its perfect closure. Let f ∈ k[[t]] be algebraic over k(t). Then, [k(t)(f) :
k(t)] = [kp(t)(f) : kp(t)].

Proof of Theorem 3.3. — By Proposition 3.4, we may, without any loss of gen-
erality, replace the field k by the perfect closure of the subfield of k generated
over Fp by the coefficients of f . Hence we may assume that k is perfect.

Let E ∈ k(t, y) be the minimal polynomial of f , and let Ey denote its
derivative with respect to y. Define J := (−1, 0] and

C ′ := NP(E) +
(
GR × J

)
.

By following the proof of Theorem 2.3, we obtain that the k-vector space

W :=

{
P (t, f)

Ey(t, f)
: P ∈ k[t, y], NP(P ) ⊂ C ′

}
contains f and is invariant under Sr for all r ∈ G. Noticing that ∆G commutes
with Sr whenever r ∈ G, it follows that ∆G(W ) is also invariant under Sr for
all r ∈ G.

Let V denote the K0,G-span of ∆G(W ) in KG := Frac(RG). We first show
that the dimension of V , viewed as a K0,G-vector space, is bounded by N , and
then prove that V is invariant under the action of the Frobenius map.



DIAGONALS AND ALGEBRAICITY MODULO p 15

By linearity, we see that V is spanned by the elements tifj

Ey(t,f)
for (i, j)

running over C ′ ∩ Nn+1. Moreover, two fractions

tif j

Ey(t, f)
and

ti
′
f j

′

Ey(t, f)

are K0,G-collinear when i ≡ i′ mod G, which occurs if and only if πG(i, j) =
πG(i

′, j). The dimension of V over K0,G is therefore bounded above by the
cardinality of πG(C

′ ∩ Nn+1), which is itself bounded by N (see the final
paragraph of the proof of Theorem 2.3 for more details).

Let us now show that V is invariant under the Frobenius map F. The latter
acts as an endomorphism of K0,G. We now define the “relative” Frobenius
map on KG by

ψ : KG ⊗K0,G,F K0,G −→ KG

x⊗ y 7→ xpy

where the notation⊗K0,G,F indicates that we viewK0,G as an algebra over itself
via F. Hence, in KG ⊗K0,G,F K0,G, we have 1⊗ y = yp ⊗ 1. This construction
ensures that ψ is a K0,G-linear isomorphism. Furthermore, ψ is related to the
section operators via the formula

ψ−1(f) =
∑
r∈Gp

Sr(f)⊗ tr ,

where Gp ⊂ G is a set of representatives of G/pG. As shown earlier, V is
closed under the action of Sr for all r ∈ G. Therefore, we conclude that ψ−1

induces a K0,G-linear morphism from V to V ⊗K0,G,F K0,G. Since ψ−1 is the
restriction of an injective map, it is clearly injective. Furthermore, because V
is finite dimensional over K0,G and dimK0,G

V = dimK0,G
(V ⊗K0,G,FK0,G), we

conclude that ψ−1 is an isomorphism. This implies that ψ takes V ⊗K0,G,FK0,G

to V , which in turn shows that V is invariant under the Frobenius map.
In particular, for all nonnegative integers s, we have ∆G(f)

ps ∈ V . Since

dimK0,G
V ≤ N , it follows that ∆G(f),∆G(f)

p, . . . ,∆G(f)
pN must be linearly

dependent over K0,G. Thus, there exist c0, c1, . . . , cN ∈ K0,G, not all zero,
such that

c0 ·∆G(f) + c1 ·∆G(f)
p + · · ·+ cN ·∆G(f)

pN = 0 ,

as desired.

3.3. Proof of Theorem 3.1. — We will now proceed with the proof of the
main result of this section.

Proof of Theorem 3.1. — We apply Theorem 3.3 with the group G generated
by (1, . . . , 1). As already noted, the diagonal ∆G coincides with the usual
diagonal ∆, under the identification t := t1 · · · tn. Let A(t, y) be the minimal
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polynomial of f , so that A has degree d, total height h, and partial height
h = (h1, . . . , hn). Let πG and C be the mapping and convex set defined in
the statement of Theorem 3.3. By Theorem 3.3, it remains to prove that
Card

(
πG(C ∩ Nn+1)

)
≤ N , where N is defined as in Equation (3.1).

Consider an element c := (a1, . . . , an, b) ∈ C ∩ Nn+1. By definition of C,
we have −1 < b ≤ d, and since b is an integer, we conclude that 0 ≤ b ≤ d.
Moreover, by translating c by an element ofG, we may assume that 0 ≤ ai ≤ hi
for all i ∈ {1, . . . , n}, and

∑n
i=1 ai ≤ h. Define a := min{a1, . . . , an} and, for

each i, set ãi := ai − a. Then at least one of the first n coordinates of c̃ :=
(ã1, . . . , ãn, b) is zero. Furthermore, we still have 0 ≤ ãi ≤ hi and

∑n
i=1 ãi ≤ h.

Since πG(c) = πG(c̃), it follows that every element of πG(C ∩ Nn+1) has a
preimage in both of the following sets:

E1 :=
{
(a1, . . . , an, b) ∈ Nn+1 : b ≤ d,∀i, ai ≤ hi,∃i, ai = 0

}
,

E2 :=

{
(a1, . . . , an, b) ∈ Nn+1 : b ≤ d,

n∑
i=1

ai ≤ h,∃i, ai = 0

}
.

The cardinalities of these sets are given by

Card(E1) = (d+ 1) ·

(
n∏

i=1

(hi + 1)−
n∏

i=1

hi

)
,

Card(E2) = (d+ 1) ·
((

n+ h

n

)
−
(
h

n

))
.

Thus, we obtain that Card
(
πG(C ∩ Nn+1)

)
≤ min{Card(E1),Card(E2)} = N ,

as required.
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