
Computation of the Similarity Class of the p-Curvature∗

Alin Bostan
Inria (France)

alin.bostan@inria.fr

Xavier Caruso
Université Rennes 1 (France)

xavier.caruso@normalesup.org

Éric Schost
Univ. of Waterloo (Canada)

eschost@uwaterloo.ca

ABSTRACT
The p-curvature of a system of linear differential equations
in positive characteristic p is a matrix that measures how far
the system is from having a basis of polynomial solutions.
We show that the similarity class of the p-curvature can be
determined without computing the p-curvature itself. More
precisely, we design an algorithm that computes the invariant
factors of the p-curvature in time quasi-linear in √p. This is
much less than the size of the p-curvature, which is linear in p.
The new algorithm allows to answer a question originating
from the study of the Ising model in statistical physics.

CCS Concepts
•Computing methodologies → Algebraic algorithms;

Keywords
differential equations; p-curvature; algebraic complexity

1. INTRODUCTION
Differential equations in positive characteristic p are im-

portant and well-studied objects in mathematics [22,33,34].
The main reason is arguably one of Grothendieck’s (still un-
solved) conjectures [26,27,1], stating that a linear differential
equation with coefficients in Q(x) admits a basis of algebraic
solutions if and only if its reductions modulo (almost) all
primes p admit a basis of polynomial solutions modulo p.
Another motivation stems from the fact that the reductions
modulo prime numbers yield useful information about the
factorization of differential operators in characteristic zero.
To a linear differential equation in fixed characteristic p, or

more generally to a system of such equations, is attached a
simple yet very useful object, the p-curvature. Let Fq be the
finite field with q = pa elements. The p-curvature of a system
of linear differential equations with coefficients in Fq(x) is a
matrix with entries in Fq(x) that measures the obstructions
∗We warmly thank the referees for their very helpful comments,
and for pointing out a mistake in an earlier version of the article.
We thank M. Giesbrecht, G. Labahn and A. Storjohann for useful
discussions. The third author is supported by NSERC.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

ISSAC’16, July 19–22, 2016, Waterloo, ON, Canada

ACM ISBN 978-1-4503-4380-0/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2930889.2930897

for the given system to possess a fundamental matrix of poly-
nomial solutions in Fq[x]. Its definition is remarkably simple,
especially at a higher level of generality: the p-curvature of
a differential module (M,∂) of dimension r over Fq(x) is the
“differential-Frobenius-map” ∂p = ∂ ◦ · · · ◦∂ (p times). When
applied to the differential module canonically attached with
the system Y ′ = A(x)Y , the p-curvature materializes into
the p-th iterate ∂pA of the map ∂A : Fq(x)r → Fq(x)r that
sends v to v′−Av, or more concretely, into the matrix Ap(x)
of this map with respect to the canonical basis of Fq(x)r. It
is given as the term Ap of the sequence (Ai)i of matrices in
Mr(Fq(x)) defined by

A1 = −A and Ai+1 = A′i −A ·Ai for i ≥ 1.
From a computer algebra perspective, many effectivity

questions naturally arise. They primarily concern the al-
gorithmic complexity of various operations and properties
related to the p-curvature: How fast can one compute Ap?
How fast can one decide its nullity? How fast can one de-
termine its minimal and characteristic polynomial? Apart
the fundamental nature of these questions from the algebraic
complexity theory viewpoint, there are concrete motivations
for the efficient computation of the p-curvature, coming from
various applications, notably in enumerative combinatorics
and statistical physics [7, 8, 2].
We pursue the algorithmic study of the p-curvature, ini-

tiated in [9, 3, 4]. In those articles, several questions were
answered satisfactorily, but a few other problems were left
open. In summary, the current state of affairs is as follows.
First, the p-curvature Ap can be computed in time O(log p)
when r = 1 and O (̃p) when r > 1. The soft-O notation
O (̃) indicates that polylogarithmic factors in the argument
of O() are deliberately not displayed. These complexities
match, up to polylogarithmic factors, the generic size of Ap.
Secondly, one can decide the nullity of Ap in time O (̃p) and
compute its characteristic polynomial in time O (̃√p). It
is not known whether the exponent 1/2 is optimal for the
last problem. In all these estimates, the complexity (“time”)
measure is the number of arithmetic operations (±,×,÷) in
the ground field Fq, and the dependence is expressed in the
main parameter p only. Nevertheless, precise estimates are
also available in terms of the other parameters of the input.
In the present work, we focus on the computation of all

the invariant factors of the p-curvature, and show that they
can also be determined in time O (̃√p). Previously, this
was unknown even for the minimal polynomial of Ap or for
testing the nullity of Ap. The fact that a sublinear cost
could in principle be achievable, although Ap itself has a
total arithmetic size linear in p, comes from the observation

http://dx.doi.org/10.1145/2930889.2930897

that the coefficients of the invariant factors of Ap lie in the
subfield Fq(xp) of Fq(x), in other words they are very sparse.
To achieve our objective, we blend the methods used in

our previous works [3] and [4]. The first key ingredient is the
construction, for any point a in the algebraic closure of Fq
that is not a pole of A(x), of a matrix Ya with entries in
` = Fq(a) which is similar to the evaluation Ap(a) of the
p-curvature at the point a. This construction comes from [4]
and ultimately relies on the existence of a well-suited ring, of
so-called Hurwitz series in x−a, for which an analogue of the
Cauchy–Lipschitz theorem holds for the system Y ′ = A(x)Y
around the (ordinary) point x = a. The matrix Ya is the
p-th coefficient of the fundamental matrix of Hurwitz series
solutions of Y ′ = A(x)Y at x = a.
The second key ingredient is a baby step / giant step

algorithm that computes Ya in O (̃√p) operations in ` via
fast matrix factorials. Finally, we recover the invariant factors
of Ap from those of the matrices Ya, for a suitable number
of values a. The main difficulty in this interpolation process
is that there exist badly behaved points a for which the
invariant factors of Ap(a) are not the evaluations at a of the
invariant factors of Ap(x). The remaining task is then to
bound the number of unlucky evaluation points a. The key
feature allowing a good control on these points, independent
of p, is the fact that the invariant factors of Ap(x) have
coefficients in Fq(xp).
Relationship to previous work. There exists a large
body of work concerning the computation of so-called Frobe-
nius forms of matrices (that is, the list of their invariant
factors, possibly with corresponding transformation matri-
ces), and the related problem of Smith forms of polynomial
matrices. The specificities of our problem prevent us from
applying these methods directly; however, our work is related
to several of these previous results.
Let ω be a feasible exponent for matrix multiplication. The

best deterministic algorithm known so far for the computa-
tion of the Frobenius form of an n× n matrix over a field k
is due to Storjohann [31]. This algorithm has running time
O(nω log(n) log log(n)) operations in k. We will use it to
compute the invariant factors of the matrices Ya above. Las
Vegas algorithms were given by Giesbrecht [19], Eberly [14]
and Pernet and Storjohann [28], the latter having expected
running time O(nω) over sufficiently large fields.
The case of matrices with integer or rational entries has

attracted a lot of attention; this situation is close to ours,
with the bit size of integers playing a role similar to the
degree of the entries in the p-curvature. Early work goes
back to algorithms of Kaltofen et al. [23, 24] for the Smith
form of matrices over Q[x], which introduced techniques used
in several further algorithms, such as the Las Vegas algorithm
by Storjohann and Labahn [32]. Giesbrecht’s PhD thesis [18]
gives a Las Vegas algorithm with expected cost O (̃nω+2d)
for the Frobenius normal form of an n×n matrix with integer
entries of bit size d; Storjohann and Giesbrecht substantially
improved this result in [20], with an algorithm of expected
cost O (̃n4d + n3d2). The best Monte Carlo running time
known to us is O (̃n2.698d), by Kaltofen and Villard [25].
In the latter case of matrices with integer coefficients, a

common technique relies on reduction modulo primes, and a
main source of difficulty is to control the number of “unlucky”
reductions. We pointed out above that this is the case in our
algorithm as well. In general, the number of unlucky primes
is showed to be O (̃n2d) in [18]; in our case, the degree d

of the entries grows linearly with p, but as we said above,
we can alleviate this issue by exploiting the properties of
the p-curvature. Storjohann and Giesbrecht proved in [20]
that a candidate for the Frobenius form of an integer matrix
can be verified using only O (̃nd) primes; it would be most
interesting to adapt this idea to our situation.

Structure of the paper. In Section 2, we recall the main
theoretical properties of the invariant factors of a polynomial
matrix, and study their behavior under specialization. We ob-
tain bounds on bad evaluation points, and use them to design
(deterministic and probabilistic) evaluation-interpolation al-
gorithms for computing the invariant factors of a polynomial
matrix. Section 3 is devoted to the design of our main al-
gorithms for the similarity class of the p-curvature, with
deterministic and probabilistic versions for both the system
case and the scalar case. Finally, Section 4 presents an ap-
plication of our algorithm, that allows to answer a question
coming from theoretical physics.

Complexity basics. We use standard complexity notation,
such as ω for the exponent of matrix multiplication. The
best known upper bound is ω < 2.3729 from [15]. Many
arithmetic operations on univariate polynomials of degree d
in k[x] can be performed in O (̃d) operations in the field k:
addition, multiplication, shift, interpolation, etc, the key to
these results being fast polynomial multiplication [29, 11, 21].
A general reference for these questions in [17].

2. COMPUTING INVARIANT FACTORS OF
SPECIAL POLYNOMIAL MATRICES

2.1 Definition and classical facts
We recall here some basic facts about invariant factors of

matrices defined over a field. We fix for now a field K, and
a matrix M ∈ Mn(K). For a monic polynomial P = T d −∑d−1

i=0 aiT
i ∈ K[T], let MP denote its companion matrix:

MP =

a0

1 a1
. . .

...
1 ad−1

 .

A well-known theorem [16, Th. 9, Ch. VII] asserts that
there exist a unique sequence of monic polynomials I1, . . . , In
for which Ij divides Ij+1 for all j and M is similar to a block
diagonal matrix whose diagonal entries are MI1 , . . . ,MIn .
The Ij ’s are called the invariant factors ofM . We emphasize
that, with our convention, there are always n invariant fac-
tors but some of them may be equal to 1, in which case the
corresponding companion matrix is the empty one. Under
this normalization, the j-th invariant factor Ij can be ob-
tained as Ij = Gj/Gj−1, where Gj is the gcd of the minors
of size j of the matrix T In −M , where In stands for the
identity matrix of size n. The invariant factors are closely
related to the characteristic polynomial; indeed, we have

I1 · I2 · · · In = Gn = det(T In −M). (1)

Given some irreducible polynomial P in K[T], we consider
the sequence (of integers):

e 7→ dP,e = dimK kerP e(M)
degP . (2)

It turns out that this sequence completely determines the
P -adic valuation of the invariant factors. Indeed, denoting
by vj the P -adic valuation of Ij , we have the relations:

dP,e =
n∑
j=1

min(e, vj), (3)

dP,e − dP,e−1 = Card{j | vj ≥ e} (4)

from which the vj ’s can be recovered without ambiguity since
they form a nondecreasing sequence. It also follows from the
above formula that the sequence e 7→ dP,e is concave and
eventually constant. Its final value is the dimension of the
characteristic subspace associated to P and it is reached as
soon as e is greater than or equal to vn.

2.2 Behaviour under specialization
Let k be a perfect field of characteristic p. We consider a

matrix M(x) with coefficients in k[x]. For an element a lying
in a finite extension ` of k, we denote by M(a) the image of
M(x) under the mapping k[x] → `, x 7→ a. Our aim is to
compare the invariant factors of M(x) and those of M(a).
We introduce some notation. Let I1(x, T), . . . , In(x, T)

be the invariant factors of M(x). It follows from the re-
lation (1) that they all lie in k[x, T]. We can therefore
evaluate them at x = a for each element a ∈ ` as above
and get this way univariate polynomials with coefficients
in `. Let I1(a, T), . . . , In(a, T) be these evaluations. We
also consider the invariant factors of M(a) and call them
I1,a(T), . . . , In,a(T). We furthemore define

Gj(x, T) = I1(x, T) · I2(x, T) · · · Ij(x, T)
and Gj,a(T) = I1,a(T) · I2,a(T) · · · Ij,a(T).

The characterization of the Gj ’s in term of minors yields:

Lemma 2.1. For all a ∈ ` and all j ∈ {1, . . . , n}, the
polynomial Gj(a, T) divides Gj,a(T) in `[T].

Let P1(x, T), . . . , Ps(x, T) be the irreducible factors of the
characteristic polynomial χ(x, T) of M(x), and let us write
χsep(x, T) for P1(x, T) · · ·Ps(x, T). For all 1 ≤ i ≤ s and
1 ≤ j ≤ n, let ei,j be the multiplicity of Pi(x, T) in Ij(x, T).

Proposition 2.2. We assume χsep(a, T) is separable and

dimk(x) kerPi(x,M(x))ei,j+1 = dim` kerPi(a,M(a))ei,j+1

for all i and for all j < n. Then Ij(a, T) = Ij,a(T) for all j.
Proof. The equality of dimensions is also true for j = n,

since their sum on both sides is equal to n (using separability)
and these dimensions can only increase by specialization. Let
dPi,e be the sequence defined by Eq. (2) with respect to the
irreducible polynomial Pi(x, T) and the matrix M(x). We
define similarly for each irreducible factor P (T) of Pi(a, T)
the sequence dP,e corresponding to the polynomial P (T) and
the matrix M(a). We claim that it is enough to prove that
dPi,e = dP,e for all e, i and all irreducible divisors P (T) of
Pi(a, T). Indeed, by Eq. (4), such an equality would imply:

vP (T)(Ij,a(T)) = ei,j (5)

provided that P (T) is an irreducible divisor of Pi(a, T), and
where vP (T) denotes the P (T)-adic valuation. On the other
hand, still assuming that P (T) is an irreducible divisor of
Pi(a, T), it follows from the definition of the ei,j ’s that:

vP (T)(Ij(a, T)) ≥ ei,j (6)

and that the equality holds if and only if P (T) does not divide
any of the Pi′(a, T) for i′ 6= i. Comparing characteristic
polynomials, we know moreover that

∑n

j=1 vP (T)(Ij,a(T)) =∑n

j=1 vP (T)(Ij(a, T)). Combining this with (5) and (6), we
find that the Pi(a, T)’s are pairwise coprime and finally get
Ij(a, T) = Ij,a(T) for 1 ≤ j ≤ n, as wanted.
Until the end of the proof, we fix the index i and reserve

the letter P to denote an irreducible divisor of Pi(a, T). For
a fixed integer e, denote by j0 the greatest index j for which
vP (T)(Ij,a(T)) < e and observe that Eq. (3) can be rewritten
dP,e = e ·

(
n − j0

)
+ vP (T)

(
Gj0,a(T)

)
. Using Lemma 2.1,

we derive dP,e ≥ e ·
(
n − j0

)
+ vP (T)

(
Gj0(a, T)

)
≥ dPi,e

for all P and e. Eq. (4) now implies that the indices e for
which dPi,e − dPi,e−1 > dPi,e+1 − dPi,e are exactly the ei,j ’s
(1 ≤ j ≤ n). Using concavity, we then observe that it is
enough to check that dPi,e = dP,e for indices e of the form
ei,j + 1. For those e, we have by assumption:∑

P
degP · dP,e = dim` kerPi(a,M(a))e

= dimk(x) kerPi(x,M(x))e

= degT Pi · dPi,e =
∑

P
degP · dPi,e

and thus dP,e = dPi,e for all P because the inequalities
dP,e ≥ dPi,e are already known.

2.3 A bound on bad evaluation points
Let M(x) be a square matrix of size n with coefficients

in k[x]. We set X = xp and assume that:
(i) the entries ofM(x) have degree at most pm (for a m ∈ N),
(ii) M(x) is similar to a matrix with coefficients in k(X).

We are going to bound the number of values of a for which
the invariant factors of M(x) do not specialize correctly at
x = a. Similar discussions appear is Section 4 of Giesbrecht’s
thesis [18] in the (more complicated) case of integer matrices.
Our treatment is nevertheless rather different in many places.

The basic bound. By assumption (ii), the characteristic
polynomial χ(x, T) lies in the subring k[X,T] of k[x, T].

Lemma 2.3. The invariant factors Ij(x, T) all belong to
k[X,T]. Their degree with respect to X is at most mn.

Proof. By assumption (i), χ(x, T) is a polynomial in x
of degree at most pmn. It then follows from Eq. (1) that
the Ij(x, T)’s are polynomials in x of degree at most pmn
as well. Now, the assumption (ii) ensures that the Ij(x, T)’s
actually lie in k(X)[T]. This completes the proof.

Lemma 2.4. We assume that p > n. There are at most
degX χ(x, T) · (2n− 1) points a ∈ k such that at least one of
the Pi(a, T)’s is not separable.

Proof. We have that degX χsep(x, T) ≤ degX χ(x, T)
and degT χsep(x, T) ≤ n, since χsep divides χ. Denote by
D(x) the discriminant of χsep(x, T) with respect to T . Its
degree in X is at most degX χ(x, T) · (2n − 1), and the as-
sumption p > n implies that D(x) is not identically zero. For
any a ∈ k such that D(ap) 6= 0, the polynomial χsep(ap, T)
is separable, and the same holds for the Pi(ap, T)’s.

Proposition 2.5. We assume p > n. Let a1, . . . , aN be
elements in a separable closure of k which are pairwise non
conjugate over k. We assume that for each i ∈ {1, . . . , N},

there exists j ∈ {1, . . . , n} with Ij(ai, T) 6= Iai,j(T). Then:
N∑
i=1

deg(ai) ≤ 4mn · (n− 1) +mn · (2n− 1)

where deg(ai) denotes the algebraicity degree of ai over k.

Proof. We use the criteria of Proposition 2.2. We start
by putting away the values of a for which at least one of
the Pi(a, T)’s is not separable. By Lemma 2.4, there are at
most mn · (2n− 1) such values. We then have to bound from
above the values of a such that the equalities:

dimk(x) kerPi(x,M(x))e = dim` kerPi(a,M(a))e

may fail for some i and some exponent e = ei,j +1 for some j.
Let us fix such a pair (i, e). Set N(x) = Pi(x,M(x))e

for simplicity. By assumption (i), the entries of N(x) have
degree at most pmi,e with mi,e = e ·

(
mdegT Pi + degX Pi

)
.

On the other hand, we deduce from assumption (ii) that
the Pi(x, T)’s all lie in k[X,T] and, as a consequence, that
N(x) is similar to a matrix with coefficients in k(X). Define
d = dimk(x) kerN(x). The equality dim` kerN(a) = d then
fails if and only if the minors of N(x) of size n − d all
vanish at x = a, i.e., if and only if the gcd ∆(x) of these
minors is divisible by the minimal polynomial of a over k,
say πa(x). Noting that ∆(x) ∈ k[X], the latter condition is
also equivalent to the fact that πa(x)p divides ∆(x) in the
ring k[X]. This can be possible for at most degX ∆(x) ≤
(n− d)mi,e ≤ (n− 1)mi,e values of a.

Therefore, if a1, . . . , aN are pairwise non-conjugate “un-
lucky values” of a, the sum appearing in the statement of
the proposition is bounded from above by:

(n− 1)
∑

i,e
mi,e = m(n− 1)

∑
i,e
e degT Pi

+ (n− 1)
∑

i,e
edegX Pi.

We notice that, when i remains fixed, the number of expo-
nents of the form ei,j + 1 (1 ≤ j < n) is bounded from above
by ei,n + 1. The sum of these exponents is then at most:(∑n−1

j=1 ei,j
)

+ ei,n + 1 = ei + 1 ≤ 2ei,

where ei denotes the multiplicity of the factor Pi(x, T) in the
characteristic polynomial χ(x, T). Our bound then becomes:

2m(n− 1) degT χ+ 2(n− 1) degX χ.

Using degT χ = n and degX χ ≤ mn yields the bound.

A refinement. For the applications we have in mind, we
shall need a refinement of Proposition 2.5 under the following
hypothesis depending on a parameter µ ∈ N:

(Hµ): the polynomial χ has degree at most pµ w.r.t x.
We observe that (Hµ) is fulfilled when M(x) is a companion
matrix whose entries are polynomials of degree at most pµ.

Proposition 2.6. Under the assumptions of Prop. 2.5
and the additional hypothesis (Hµ), we have:

N∑
i=1

deg(ai) ≤ 2µ · (2n− 1) + µ · (2n− 1).

Proof. Let P (x, T) be any bivariate polynomial with
coefficients in k. Set N(x) = P (x,M(x)) and let δ(x) denote

the gcd of the minors of size s (for some integer s) of N(x).
We claim that:

degx δ(x) ≤ pµ · degT P + s · degx P (7)

To prove the claim, we consider the Frobenius normal form
M̃(x) of M(x) and set Ñ(x) = P (x, Ñ(x)). Observe that
any minor of M̃(x) vanishes or has the shape ±c1(x) · · · cn(x)
where cj(x) is a coefficient of Ij(x, T) for all j. Noting that
degx I1 + · · · + degx In = degx χ ≤ pµ, we derive that all
the minors of M̃(x) have degree at most pµ. Now write
P (x, T) =

∑degTP
j=0 aj(x)T j where the ai(x)’s lie in k[x]. Let

f̃ denote the k[x]-linear endomorphism of k[x]n attached to
the matrix M̃(x). Set g̃ = P (x, f̃); it clearly corresponds to
Ñ(x). Given a vector space E and s linear endomorphisms
u1, . . . , us of E, let us agree to define u1 ∧ · · · ∧ us as

E⊗s →
∧s

E
x1 ⊗ · · · ⊗ xs 7→ u1(x1) ∧ · · · ∧ us(xs).

where
∧s

E is here defined as a quotient of E⊗s. Expanding
the exterior product

∧s
g̃, we get:

∧s
g̃ =

degT P∑
i1,...,is=0

ai1 (x) · · · ais(x) · f̃ i1 ∧ · · · ∧ f̃ is . (8)

Moreover, assuming for simplicity that i1 ≤ i2 ≤ · · · ≤ is
and letting i0 = 0 by convention, we can write:

f̃ i1 ⊗ · · · ⊗ f̃ is =©s
j=0
[
(
⊗j id)⊗ (

⊗s−j
f̃)ij−ij−1

]
,

where © denotes the composition of the above (pairwise
commuting) maps. We get that the entries of the matrix (in
the canonical basis) of f̃ i1 ∧ · · · ∧ f̃ is all have degree at most
pµ · is. The same argument demonstrates that the degrees
of the entries of the above matrix are not greater than:

pµ ·max(i1, . . . , is) ≤ pµ · degT P

when we no longer assume that the ij ’s are sorted by nonde-
creasing order. Therefore, back to Eq. (8), we find that the
entries of

∧s
Ñ(x) have degree at most pµ·degT P+s·degx P .

It is then also the case of its trace, which is the same as
the trace of

∧s
N(x) since N(x) and Ñ(x) are similar. This

finally implies the claimed inequality (7) because δ(x) has
to divide this trace.
The Proposition now follows by inserting the above input

in the proof of Proposition 2.5.

2.4 Algorithms
We keep the matrix M(x) satisfying the assumptions (i)

and (ii) of §2.3. From now on, we assume that the only
access we have to the matrixM(x) passes through a black box
invariant_factors_atM(x) that takes as input an element a
lying in a finite extension ` of k and outputs instantly the
invariant factors Ij,a(T) of the matrix M(a). Our aim is
to compute the invariant factors of M(x). We will propose
two possible approaches: the first one is deterministic but
rather slow although the second one is faster but probabilistic
and comes up with a Monte-Carlo algorithm which may
sometimes output wrong answers.
Throughout this section, the letter D refers to a priori

upper bound on theX-degree of the characteristic polynomial
of M(x). One can of course always take D = mn but better
bounds might be available in particular cases. Similarly we
reserve the letter F for an upper bound on the sum of degrees

of “unlucky evaluation points”. Proposition 2.5 tells us that
mn(6n− 5) is always an acceptable value for F . Remember
however that this value can be lowered to 3µ(2n− 1) under
the hypothesis (Hµ) thanks to Proposition 2.6. We will
always assume that F ≥ D.
For simplicity of exposition, we assume from now on that

k = Fq is a finite field of cardinality q (it is more difficult
and the case of most interest for us).

Deterministic. The discussion of §2.3 suggests the follow-
ing algorithm whose correctness follows directly from the
definition of F together with the assumption F ≥ D.

Algorithm invariant_factors_deterministic
Input: M(x) satisfying (i) and (ii), D, F with F ≥ D
Output: The invariant factors of M(x)
1. Construct an extension ` of Fq of degree F + 1

and pick an element a ∈ ` such that ` = Fq[a]
Cost: O (̃F) operations in Fq

2. I1,a(T), . . . , In,a(T) = invariant_factors_atM(x)(a)
3. for j = 1, . . . , n
4. Find Ij(x, T) of degree ≤ D s.t. Ij(a, T) = Ij,a(T)
5. return I1(x, T), . . . , In(x, T)

Proposition 2.7. The algorithm above requires only one
call to the black box invariant_factors_atM(x) with an
input of degree exactly F + 1.

Probabilistic. We now present a Monte-Carlo algorithm:

Algorithm invariant_factors_montecarlo
Input: M(x) s.t. (i) and (ii), ε ∈ (0, 1), D, F with F ≥ D
Output: The invariant factors of M(x)
1. Find the smallest integer s such that:

2 · (D+s+1)2

s(qs − 2F) + 1
2 ·
(4F
qs

)(D−2)/s
≤ ε (9)

and set K = d 3D
s
e and k = dD+1

s
e.

2. for i = 1, . . . ,K
3. pick at random ai ∈ Fqs s.t. Fqs = Fq[ai]

Cost: O (̃s) operations in Fq
4. I1,i(T), . . . , In,i(T) = invariant_factors_atM(x)(ai)

5. for j = 1, . . . , n
6. dj = maxi deg(I1,i(T) · I2,i(T) · · · Ij,i(T))
7. select I ⊂ {1, . . . ,K} of cardinality k s.t.

(i) deg(I1,i(T) · I2,i(T) · · · Ij,i(T)) = dj for all i ∈ I
(ii) the ai are pairwise non conjugate for i ∈ I
Remark: if such I does not exist, raise an error

8. compute Ij ∈ Fq[X,T] of X-degree ≤ D s.t.
Ij(ai, T) = Ij,i(T) for all i ∈ I
Cost: O (̃D) operations in Fq

9. return I1(x, T), . . . , In(x, T)

Proposition 2.8. We have s ∈ O(log FD
ε

). Moreover:
• Correctness: Algorithm invariant_factors_montecarlo
fails or returns a wrong answer with probability at most ε.
• Complexity: It performs d 3D

s
e calls to the black box with

inputs of degree s and O (̃n(D + log F
ε

)) operations in Fq.

Proof. The first assertion is left to the reader. Let A
be the set of elements a of Fqs such that Fq[a] = Fqs . It is
an easy exercise to prove that A has at least qs

2 elements
(the bound is not sharp). Let C1, . . . , CC be the conjugacy
classes (under the Galois action) in A. Remark that each Ci
has by definition s elements, so that C ≥ qs

2s . We say that a
conjugacy class is bad if it contains one element a for which
Ij(a, T) 6= Ia,j(T) for some j. Otherwise, we say that it is
good. Let B (resp. G) be the number of bad (resp. good)
classes. We have B +G = C and B ≤ F

s
by definition of F .

The algorithm invariant_factors_montecarlo succeeds
if there exist at least k indices i for which the corresponding
ai’s lie in pairwise distinct good classes. This happens with
probability at least:

1
CK
·
K∑
j=k

(
K
j

)
·G(G− 1) · · · (G− k + 1) ·Gj−k ·BK−j .

(The above formula gives the probability that the first k
good classes are pairwise distinct, which is actually stronger
than what we need.) The above quantity is at least equal to(

1− k

G

)k
·

(
1 −

k−1∑
j=0

(
K
j

)
·
(
G

C

)j
·
(
B

C

)K−j)
.

Moreover for j ≤ k − 1, we have:(
G

C

)j
·
(
B

C

)K−j
≤
(
BG

C2

)j
·
(
B

C

)K−2j
≤ 1

22j ·
(2F
qs

)K−2j

≤ 1
2K ·

(4F
qs

)K−2j
≤ 1

2K ·
(4F
qs

)(D−2)/s
.

Therefore the probability of success is at least:(
1− k

G

)k
·
(

1 − 1
2 ·
(4F
qs

)(D−2)/s
)
.

Using k ≤ D+s+1
s

and G ≥ q2−2F
2s , we find that the probabil-

ity of failure is at most the LHS of Eq. (9). The correctness
is proved. As for the complexity, the results are obvious.

3. COMPUTING INVARIANT FACTORS
OF THE P-CURVATURE

Throughout this section, we fix a finite field k = Fq of
cardinality q and characteristic p. We endow the field of
rational functions k(x) with the natural derivation f 7→ f ′.

3.1 The case of differential modules
We recall that a differential module over k(x) is k(x)-

vector space M endowed with an additive map ∂ : M →M
satisfying the following Leibniz rule:

∀f ∈ k(x), ∀m ∈M, ∂(fm) = f ′ ·m+ f · ∂(m).

The p-curvature of a differential module M is the mapping
∂p = ∂ ◦ · · · ◦ ∂ (p times). Using the fact that the p-th
derivative of any f ∈ k(x) vanishes, we derive from the
Leibniz relation above that ∂p is k(x)-linear endomorphism
of M . It follows moreover from [4, Remark 4.5] that ∂p is
defined over k(xp), in the sense that there exists a k(x)-basis
of M in which the matrix of ∂p has coefficients in k(xp). In
particular, all the invariant factors of the p-curvature have
their coefficients in k(xp).

Statement of the main Theorem. From now on, we fix
a differential module (M,∂). We assume that M is finite
dimensional over k(x) and let r denote its dimension. We
pick (e1, . . . , er) a basis ofM and let A denote the matrix of ∂
with respect to this basis. We write A = 1

fA
Ã where fA and

the entries of Ã all lie in k[x]. Let d be an upper bound on
the degrees of all these polynomials. The aim of this section
is to design fast deterministic and probabilistic algorithms for
computing the invariant factors of the p-curvature of (M,∂).
The following Theorem summarizes our results.

Theorem 3.1. We assume p > r.
1. There exists a deterministic algorithm that computes the
invariant factors of the p-curvature of (M,∂) within

O˜
(
dω+ 3

2 rω+2√p
)

operations in k = Fq.
2. Let ε ∈ (0, 1). There exists a Monte-Carlo algorithm that
computes the invariant factors of the p-curvature of (M,∂) in

O˜
(
dω+ 1

2 rω · (dr − log ε) · √p
)

operations in k = Fq. This algorithm returns a wrong answer
with probability at most ε.

In what follows, we will use the notation Ap(x) for the
matrix of the p-curvature of (M,∂) with respect to the dis-
tinguished basis (e1, . . . , er). Given an element a lying in
a finite extension ` of k, we denote by Ap(a) ∈ Mr(`) the
matrix deduced from Ap by evaluating it at x = a.
The similarity class of Ap(a). Let S be an irreducible
polynomial over k. Set ` = k[u]/S and let a denote the
image of the variable u in `. We assume that S does not
divide fA, i.e., fA(a) 6= 0. The first ingredient we need is
the construction of an auxiliary matrix which is similar to
Ap(a). This construction comes from our previous paper [4].
Let us recall it briefly. We define the ring `[[t]]dp of Hurwitz
series whose elements are formal infinite sums of the shape:

a0 + a1γ1(t) + a2γ2(t) + · · ·+ anγn(t) + · · · (10)

and on which the addition is straightforward and the multi-
plication is governed by the rule γi(t) · γj(t) =

(
i+j
i

)
γi+j(t).

(The symbol γi(t) should be thought of as ti

i! .) We moreover
endow `[[t]]dp with the derivation defined by γi(t)′ = γi−1(t)
(with the convention that γ0(t) = 1) and the projection map
pr : `[[t]]dp → ` sending the series given by Eq. (10) to its
constant coefficient a0. We shall often use the alternative no-
tation f(0) for pr(f). If f ∈ `[[t]]dp is given by the series (10),
we then have an = f (n)(0) for all nonnegative integers n. We
have a homomorphism of rings:

ψS : k[x][1
fA

]→ `[[t]]dp, f(x) 7→
p−1∑
i=0

f (i)(a)γi(t).

It is easily checked that ψS commutes with the derivation.
We can then consider the differential module over `[[t]]dp

obtained from (M,∂) by scalar extension. By definition, it
corresponds to the differential system Y ′ = ψS(A) · Y .
The benefit of working over `[[t]]dp is the existence of an

analogue of the well-known Cauchy–Lipschitz Theorem [4,
Proposition 3.4]. This notably implies the existence of a
fundamental matrix of solutions, i.e., an r × r matrix YS
with entries in `[[t]]dp, and satisfying:

Y ′S = ψS(A) · YS and YS(0) = Ir (11)

with Ir the identity matrix of size r. Moreover, as explained
in more details later, the construction of YS is effective.
For any integer n ≥ 0, we let Y (n)

S denote the matrix
obtained from YS by taking the n-th derivative entry-wise.
The next proposition is a consequence of [4, Proposition 4.4].

Proposition 3.2. The matrices Ap(a) and Y
(p)
S (0) are

similar over `.

Fast computation of Y (p)
S (0). We recall that YS is defined

as the solution of the system (11). Remembering that we
have written A = 1

fA
Ã, we obtain the relation:

ψS(fA) · Y ′S = ψS(Ã) · YS . (12)

Write fA =
∑d

i=0 fi · (x − a)i and Ã =
∑d

i=0 Ãi · (x − a)i
where the fi’s lie in ` and the Ai’s are square matrices of
size r with entries in `. Remark that f0 does not vanish
because it is equal to fA(a). Note moreover that the fi’s
can be computed for a cost of O (̃d) operations in k using
divide-and-conquer techniques. Given a fixed pair of indices
(i′, j′), the same discussion applies to the collection of the
(i′, j′)-entries of the Ai’s. The total cost for computing the
decompositions of fA and Ã is then O (̃dr2). Now, coming
back to the definitions, we find that ψS(fA) =

∑d

i=0 i!fi ·γi(t)
and ψS(Ã) =

∑d

i=0 i!Ãi ·γi(t). Eq. (12) yields the recurrence:

Y
(n+1)
S (0) =

min(n,d)∑
i=0

Bi(n) · Y (n−i)
S (0) (13)

where the Bi ∈Mr(`[u]) are defined by:

f0Bi = u(u−1) · · · (u−i+1) ·
(
Ãi − (u−i)fi+1 · Ir

)
(14)

with the convention that fd+1 = 0. Now setting:

Zn =

Y

(n−d)
S (0)

Y
(n−d+1)
S (0)

...
Y

(n)
S (0)

 , B =

Ir

Ir
. . .

Ir
Bd · · · · · · · · · B0

(with the convention Y

(i)
s (0) = 0 when i < 0), the recur-

rence (13) becomes Zn+1 = B(n) · Zn. Hence, we obtain
Zp = B(p−1) ·B(p−2) · · ·B(0) ·Z0 from what we finally get
that Y (p)

S (0) is the (r×r)-matrix located at the bottom right
corner of B(p−1) ·B(p−2) · · ·B(0). The computation of the
former matrix factorial can be performed efficiently using a
variation of the Chudnovskys’ algorithm [12,6]. Combining
this with Proposition 3.2, we end up with the following.

Proposition 3.3. The invariant factors of Ap(a) can be
computed in O (̃dωrω

√
dp) operations in the field `.

Proof. Note that B is a square matrix of size (d+1)r.
Moreover coming back to (14), we observe that the entries of
B all have degree at most d. By [5, Theorem 2] the matrix
factorial B(p− 1) ·B(p− 2) · · ·B(0) can then be computed
for the cost of O (̃dωrω

√
dp) operations in `. By [31], its

invariant factors can be obtained for an extra cost of O (̃rω)
operations in ` (which is negligible compared to the previous
one). Using Proposition 3.2 these invariant factors are also
those of Ap(a) and we are done.

Conclusion. Proposition 3.3 yields an acceptable primitive
invariant_factors_atAp(x). Plugging it in the algorithm
invariant_factors_deterministic and using the parame-
ters D = dr and F = 6dr(r−1), we end up with an algorithm
that computes the invariant factors of Ap(x) for the cost of
one unique call to invariant_factors_atAp(x) with an input
lying in an extension `/k of degree F +1 (cf Proposition 2.7).
By Proposition 3.3, we find that the total complexity of the
obtained algorithm is O

(̃
dω+ 3

2 rω+2√p
)
operations in Fq.

The first part of Theorem 3.1 is then established. The sec-
ond part is obtained in a similar fashion using the algorithm
invariant_factors_montecarlo together with Proposition
2.8 for correctness and complexity results.

3.2 The case of differential operators
The ring of differential operators k(x)〈∂〉 is the ring of

usual polynomials over k(x) in the variable ∂ except that the
multiplication is ruled by the relation ∂ · f = f · ∂ + f ′. We
define similarly the ring k[x]〈∂〉. We say that L ∈ k[x]〈∂〉
has bidegree (d, r) if it has degree d with respect to x and
degree r with respect to ∂.
If L is a differential operator in k(x)〈∂〉, one easily checks

that the set k(x)〈∂〉L of left multiples of L is a left ideal of
k(x)〈∂〉. The quotient ML = k(x)〈∂〉 /k(x)〈∂〉L is then a
vector space over k(x). It is moreover endowed with a map
∂ : ML → ML given by the left multiplication by ∂. This
map turns ML into a differential module.
We shall prove in this section that the complexities an-

nounced in Theorem 3.1 can be improved in the case of
differential modules coming from differential operators. Be-
low is the statement of our precise result.

Theorem 3.4. Let L ∈ k[x]〈∂〉 be a differential operator
of bidegree (d, r). We assume p > r.
1. There exists a deterministic algorithm that computes the
invariant factors of the p-curvature of ML within

O˜
(
(d+ r)ω+1d

1
2 r · √p

)
operations in k = Fq.
2. Let ε ∈ (0, 1). There exists a Monte-Carlo algorithm that
computes the invariant factors of the p-curvature of ML in

O˜
(
(d+ r)ωd

1
2 · (d− log ε) · √p

)
operations in k = Fq. This algorithm returns a wrong answer
with probability at most ε.

Better bounds. From now on, we fix a differential operator
L ∈ k(x)〈∂〉 of bidegree (d, r). We denote by Ap(x) the
matrix of the p-curvature ofML with respect to the canonical
basis (1, ∂, . . . , ∂r−1). If ar(x) is the leading coefficient of L
(with respect to ∂), it follows from [13, Proposition 3.2] that
Ap(x) has the form Ap(x) = 1

ar(x)p · Ãp(x) where Ãp(x) is a
matrix with polynomial entries of degree at most pd.

Proposition 3.5. The matrix Ãp(x) satisfies the hypoth-
esis (Hr+d) (introduced just before Proposition 2.6).

Proof. This is a direct consequence of Lemma 3.9 and
Theorem 3.11 of [3].

The similarity class of Ap(a). We now revisit Proposi-
tion 3.3 when the differential module comes from the differ-
ential operator L. We fix an irreducible polynomial S ∈ k[x]

and assume that S is coprime with the leading coefficient
ar(x) of L. We set ` = k[x]/S and let a denote the image of
x is `. We define t = x − a ∈ `[x] and consider the ring of
differential operators `[x]〈∂〉. The latter acts on `[[t]]dp by
letting ∂ act as the derivation. Let YS be the fundamental
system of solutions of the equation Y ′S = ψS(A) ·YS where A
is the companion matrix which gives the action of ∂ on ML.
It takes the form:

YS =

y0 y1 · · · yr−1
y′0 y′1 · · · y′r−1
...

...
...

y
(r−1)
0 y

(r−1)
1 · · · y

(r−1)
r−1

where yj ∈ `[[t]]dp is the unique solution of the differential
equation Lyj = 0 with initial conditions y(n)

j (0) = δj,n (where
δ·,· is the Kronecker symbol) for 0 ≤ n < r.
We introduce the Euler operator θ = t · ∂ ∈ `[x]〈∂〉. Using

the techniques of [3, Section 4.1], one can write L · ∂d =∑d+r
i=0 bi(θ)∂

i within O (̃(r + d)d) operations in `. Here the
bi’s are polynomials with coefficients in ` of degree at most d.
One can check moreover that the polynomial bd+r is constant
equal to ar(a); in particular, it does not vanish thanks to our
assumption on S. For all j, define zj =

∑∞
n=0 y

(n)
j (0)γn+d(t).

Clearly ∂dzj = yj , so that we have
(∑d+r

i=0 bi(θ)∂
i
)
· zi = 0

for all i. Noting that θ acts on γn(t) by multiplication by n,
we get the recurrence relation:

∀n ≥ 0,
d+r∑
i=0

bi(n) · y(n+i−d)
j (0) = 0

with the convention that y(n)
j = 0 when n < 0. Letting:

Zn =

y

(n−d)
0 (0) · · · y

(n−d)
r−1 (0)

y
(n−d+1)
0 (0) · · · y

(n−d+1)
r−1 (0)

...
...

Y
(n+r−1)

0 (0) · · · y
(n+r−1)
r−1 (0)

 ∈Md+r,r(`)

and B = −1
ar(a) ·

1

. . .
1

b0 b1 · · · bd+r−1

 ∈Md+r,d+r(`)

the above recurrence rewrites Zn+1 = B(n)Zn. Solving the
recurrence, we get Zp = B(p− 1) · · ·B(0) ·Z0, and we derive
that Y (p)

S (0) is the (r×r) matrix located at the bottom right
corner of B(p− 1) ·B(p− 2) · · ·B(0). Using Proposition 3.2
and [5, Theorem 2], we end up with the following proposition
(compare with Proposition 3.3).

Proposition 3.6. The invariant factors of Ap(a) can be
computed in O (̃(d+ r)ω

√
dp) operations in the field `.

Conclusion. The final discussion is now similar to the one
we had in the case of differential modules. Proposition 3.6
provides the primitive invariant_factors_atAp(x). Using it
in the algorithms invariant_factors_deterministic and
invariant_factors_montecarlo with the parametersD = d
and F = 3d(2r−1) (coming from the combination of Proposi-
tions 2.6 and 3.5), we respectively end up with deterministic
and Monte-Carlo algorithms whose complexities agree with
the ones announced in Theorem 3.4.

It is instructive to compare the methods and results of
this section with those of our previous paper [3]. We remark
that the matrix factorial considered above is nothing but the
specialization at θ = 0 of the matrix factorial in [3]. Although
the theoretical approaches of the two papers are definitively
different, they lead to very similar computations. However,
each of them has its own advantages and disadvantages. On
the one hand, the methods of [3] only deal with characteristic
polynomials and cannot see invariant factors. On the other
hand, they do not require the assumption ar(a) 6= 0 (that
is why we always took a = 0 in [3]) and can handle at the
same time the local computations at the point a and around
it, i.e., they provide roughly speaking a framework which
allows to work modulo (x−a)pn for some integer n fixed in
advance (not just n = 1) without increasing the complexity
with respect to p. The practical consequence is that the
methods of the current paper end up with algorithms whose
complexity is weakened by a factor

√
d compared to what we

might have expected at first. It would be very interesting to
find a general theoretical setting unifying the two approaches
discussed above and allowing the benefits of both of them.

4. SOLVING A PHYSICAL APPLICATION
In [10], a globally nilpotent differential operator φ(6)

H was
introduced in order to model the 6-particle contribution to
the square lattice Ising model. As shown in loc. cit., this op-
erator factors as a product of differential operators of smaller
orders. The factor which is the least understood is called L23
and has order 23. Actually L23 has not been computed so
far because its size is too large. Nevertheless there exists a
multiple of L23 which has a more reasonable size: its bidegree
is (140, 77). It turns out that this multiple, say L77, has
been determined modulo several prime numbers. Based on
this computation and using the strategy developed in this
paper, we were able to study a bit further the factorization
of L23, answering a question of the authors of [10].

Proposition 4.1. The operator L23 cannot be factorized
as a product L21 ·L2 where L2 is an operator of order 2, and
L21 is an operator of order 21 whose differential module is
isomorphic to a symmetric product SymnM for an integer
n > 1 and a differential module M .

Proof. We argue by contradiction by assuming that such
a factorization exists. This would imply that, for all p the
matrix A23,p of the p-curvature of L23 mod p decomposes:

A23,p =
(
A2,p ?

0 A21,p

)
(15)

where A2,p (resp. A21,p) is the square matrix of size 2
(resp. 21) and A21,p is similar to a symmetric product of
a d × d matrix Ad,p. We now pick p = 32647 for which
L77 mod p is known. Using Proposition 3.3, we were able
to determine the invariant factors of the p-curvature of
A77,p(15). The computation ran actually rather fast: just a
few minutes. We observed that the generalized eigenspace
of A77,p(15) for the eigenvalue 0 has dimension 23. Com-
bining this with that fact that L23 is a factor of L77 whose
p-curvature is nilpotent, we deduce that the restriction of
A77,p(15) to this characteristic space is similar to A23,p(15).
Arguing similarly, we determine the Jordan type of A23,p(15):

m 0 1 2 3 4 ≥5
rank

(
A23,p(15)m

)
23 17 11 6 3 0

Moreover the writing (15) would imply that for all m:

0 ≤ rank
(
A23,p(15)m

)
− rank

(
A21,p(15)m

)
≤ 2

and rank
(
A21,p(15)m

)
=
(
n− 1 + rank

(
Ad,p(15)m

)
n

)
.

There is only one way to satisfy these numerical constraints
which consists in taking n = 2 and:

m 0 1 2 3 4 ≥5
rank

(
Ad,p(15)m

)
6 5 4 3 2 0

Since the sequence rank
(
Ad,p(15)m

)
− rank

(
Ad,p(15)m+1)

has to be non-increasing, this is impossible.

5. REFERENCES
[1] Y. André. Sur la conjecture des p-courbures de Grothendieck-Katz et un

problème de Dwork. In Geometric aspects of Dwork theory. Vol. I, II, pages
55–112. Walter de Gruyter GmbH & Co. KG, Berlin, 2004.

[2] A. Bostan, S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, and
N. Zenine. Globally nilpotent differential operators and the square Ising
model. J. Phys. A, 42(12):125206, 50, 2009.

[3] A. Bostan, X. Caruso, and E. Schost. A fast algorithm for computing the
characteristic polynomial of the p-curvature. In ISSAC’14, pages 59–66.
ACM, New York, 2014.

[4] A. Bostan, X. Caruso, and E. Schost. A fast algorithm for computing the
p-curvature. In ISSAC’15, pages 69–76. ACM, New York, 2015.

[5] A. Bostan, T. Cluzeau, and B. Salvy. Fast algorithms for polynomial
solutions of linear differential equations. In ISSAC’05, pages 45–52. ACM
Press, 2005.

[6] A. Bostan, P. Gaudry, and É. Schost. Linear recurrences with polynomial
coefficients and application to integer factorization and Cartier-Manin
operator. SIAM Journal on Computing, 36(6):1777–1806, 2007.

[7] A. Bostan and M. Kauers. Automatic classification of restricted lattice
walks. In FPSAC’09, DMTCS Proc., AK, pages 201–215. 2009.

[8] A. Bostan and M. Kauers. The complete generating function for Gessel
walks is algebraic. Proc. Amer. Math. Soc., 138(9):3063–3078, 2010. With an
appendix by Mark van Hoeij.

[9] A. Bostan and É. Schost. Fast algorithms for differential equations in
positive characteristic. In ISSAC’09, pages 47–54. ACM, New York, 2009.

[10] S. Boukraa, S. Hassani, I. Jensen, J.-M. Maillard, and N. Zenine.
High-order Fuchsian equations for the square lattice Ising model: χ(6). J.
Phys. A, 43(11):115201, 22, 2010.

[11] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over
arbitrary algebras. Acta Inform., 28(7):693–701, 1991.

[12] D. V. Chudnovsky and G. V. Chudnovsky. Approximations and complex
multiplication according to Ramanujan. In Ramanujan revisited
(Urbana-Champaign, 1987), pages 375–472. Academic Press, Boston, 1988.

[13] T. Cluzeau. Factorization of differential systems in characteristic p. In
ISSAC’03, pages 58–65. ACM Press, 2003.

[14] W. Eberly. Asymptotically efficient algorithms for the Frobenius form.
Technical report, 2000.

[15] F. L. Gall. Powers of tensors and fast matrix multiplication. In ISSAC’14,
pages 296–303, 2014.

[16] F. R. Gantmacher. The theory of matrices. Vols. 1, 2. Translated by K. A.
Hirsch. Chelsea Publishing Co., New York, 1959.

[17] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, second edition, 2003.

[18] M. Giesbrecht. Nearly optimal algorithms for canonical matrix forms. PhD thesis,
University of Toronto, 1993.

[19] M. Giesbrecht. Nearly optimal algorithms for canonical matrix forms.
SIAM Journal on Computing, 24(5):948–969, 10 1995.

[20] M. Giesbrecht and A. Storjohann. Computing rational forms of integer
matrices. Journal of Symbolic Computation, 34(3):157–172, 2002.

[21] D. Harvey, J. van der Hoeven, and G. Lecerf. Faster polynomial
multiplication over finite fields. http://arxiv.org/abs/1407.3361, 2014.

[22] T. Honda. Algebraic differential equations. In Symposia Mathematica, Vol.
XXIV, pages 169–204. Academic Press, London, 1981.

[23] E. Kaltofen, M. S. Krishnamoorthy, and B. D. Saunders. Fast parallel
computation of Hermite and Smith forms of polynomial matrices. SIAM
Journal on Matrix Analysis and Applications, 8(4):683–690, 1987.

[24] E. Kaltofen, M. S. Krishnamoorthy, and B. D. Saunders. Parallel
algorithms for matrix normal forms. Linear Algebra and its Applications,
136:189–208, 1990.

[25] E. Kaltofen and G. Villard. On the complexity of computing determinants.
Comput. Complexity, 13(3-4):91–130, 2004.

[26] N. M. Katz. Algebraic solutions of differential equations (p-curvature and
the Hodge filtration). Invent. Math., 18:1–118, 1972.

[27] N. M. Katz. A conjecture in the arithmetic theory of differential equations.
Bull. Soc. Math. France, (110):203–239, 1982.

[28] C. Pernet and A. Storjohann. Frobenius form in expected matrix
multiplication time over sufficiently large fields, 2007.

[29] A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der
Charakteristik 2. Acta Informatica, 7:395–398, 1977.

[30] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen.
Computing, 7:281–292, 1971.

[31] A. Storjohann. Deterministic computation of the Frobenius form. In
FOCS’01, pages 368–377. IEEE Computer Society Press, 2001.

[32] A. Storjohann and G. Labahn. A fast Las Vegas algorithm for computing
the Smith normal form of a polynomial matrix. Linear Algebra and its
Applications, 253(1–3):155–173, 1997.

[33] M. van der Put. Differential equations in characteristic p. Compositio
Mathematica, 97:227–251, 1995.

[34] M. van der Put. Reduction modulo p of differential equations. Indag.
Mathem., 7(3):367–387, 1996.

http://arxiv.org/abs/1407.3361

	Introduction
	 Computing invariant factors of special polynomial matrices
	Definition and classical facts
	Behaviour under specialization
	A bound on bad evaluation points
	Algorithms

	Computing invariant factors of the p-curvature
	The case of differential modules
	The case of differential operators

	Solving a physical application
	References

