
Algebraic and Arithmetic Attributes
of Hypergeometric Functions in SageMath
Xavier Caruso

CNRS; IMB, Université de Bordeaux

Talence, France

xavier@caruso.ovh

Florian Fürnsinn

University of Vienna, Faculty of Mathematics

Vienna, Austria

florian.fuernsinn@univie.ac.at

Abstract
We report on implementations for algorithms treating algebraic and

arithmetic properties of hypergeometric functions in the computer

algebra system SageMath. We treat hypergeometric series over the

rational numbers, over finite fields, and over the 𝑝-adics. Among

other things, we provide implementations deciding algebraicity,

computing valuations, and computing minimal polynomials in pos-

itive characteristic.

1 Introduction
A hypergeometric functionwith rational top parameters 𝜶 := (𝛼1, . . . ,
𝛼𝑛) ∈ Q𝑛 and bottom parameters 𝜷 := (𝛽1, . . . , 𝛽𝑚) ∈ Q𝑚 is defined

as the power series

𝑛𝐹𝑚 (𝜶 , 𝜷 ;𝑥) :=
∞∑︁
𝑘=0

(𝛼1)𝑘 · · · (𝛼𝑛)𝑘
(𝛽1)𝑘 · · · (𝛽𝑚)𝑘

· 𝑥
𝑘

𝑘!
∈ Q[[𝑥]], (1)

where (𝛾)𝑘 := 𝛾 (𝛾 + 1) · · · (𝛾 + 𝑘 − 1) denotes the rising factorial or
Pochhammer symbol.

The hypergeometric function 𝑛𝐹𝑚 (𝜶 , 𝜷 ;𝑥) is the solution of the

differential equation L(𝜶 , 𝜷, 𝑥)𝑦 (𝑥) = 0 with, denoting 𝜗 = 𝑥 d

d𝑥
,

L(𝜶 , 𝜷, 𝑥) :=
(
𝑥 (𝜗+𝛼1) · · · (𝜗+𝛼𝑛) − 𝜗 (𝜗−𝛽1) · · · (𝜗−𝛽𝑚)

)
.

A power series 𝑓 (𝑥) ∈ 𝐾 [[𝑥]] is called algebraic if there exists
a nonzero polynomial 𝑃 (𝑥,𝑦) ∈ 𝐾 [𝑥,𝑦], such that 𝑓 (𝑥,𝑦 (𝑥)) = 0.

Similarly, a power series 𝑓 (𝑥) ∈ Q[[𝑥]] is called D-finite, if there ex-
ists a nonzero differential operator 𝐿 ∈ Q[𝑥]⟨𝜕⟩, such that 𝐿𝑓 (𝑥) =
0. Moreover, it is called globally bounded, if it has a a positive radius
of convergence and there exist two nonzero integers 𝛼, 𝛽 ∈ Z, such
that 𝛽 𝑓 (𝛼𝑥) ∈ Z[[𝑥]].

Hypergeometric functions are clearly D-finite, and the sets of

parameters for which they are algebraic or globally bounded are

fully classified. Moreover, their reductions modulo 𝑝 in F𝑝 [[𝑥]]
are algebraic, whenever they are defined. These properties make

them ideal test cases for conjectures about algebraic and arithmetic

properties of D-finite series. The need to use a software for for-

mulating and checking such conjectures appeared to the authors

when they worked, jointly with Vargas-Montoya, on Galois groups

of reductions modulo primes of D-finite series [5].

The present article is the outcome of this observation. It reports

on an open source SageMath package designed tomanipulate hyper-

geometric functions in various situations: over the rationals, over

The second named author was funded by a DOC Fellowship (27150) of the Aus-

trian Academy of Sciences at the University of Vienna. Further he thanks the

French–Austrian project EAGLES (ANR-22-CE91-0007 & FWF grant 10.55776/I6130)

for financial support.

The authors thank Austria’s Agency for Education and Internationalisation (OeAD)

and Campus France for providing funding for research stays via WTZ collaboration

project/Amadeus project FR02/2024.

finite fields and over 𝑝-adic fields. To provide these functionalities

it was necessary to develop new algorithms. They are presented

mostly in [4].

At the time being, our package is submitted for integration in a

future release of SageMath [3]. In this paper, we shortly showcase

themain features of our package. Our presentation is complemented

by an interactive worksheet gathering all the examples presented

below, available at:

https://xavier.caruso.ovh/notebook/hypergeometric-functions/

This interactive worksheet supports editing the examples and ex-

ploring new cases.

For the complete documentation of our package, we refer to

the Section Hypergeometric functions over arbitrary rings in the

reference manual of SageMath, available online here.

2 Setup
Hypergeometric functions are implemented in SageMath as ele-

ments of a symbolic ring.

In: f = hypergeometric([1/3, 2/3], [1/2], x)
In: f
Out: hypergeometric((1/3, 2/3), (1/2,), x)
In: f.parent()
Out: Symbolic Ring

We propose an implementation of algebraic and arithmetic proper-

ties of them, accessed by creating hypergeometric functions where

the argument is an element of (the fraction field of) a polynomial

ring or a power series ring.

In: S.<x> = QQ[]
In: f = hypergeometric([1/3, 2/3], [1/2], x)
In: f
Out: hypergeometric((1/3, 2/3), (1/2,), x)
In: f.parent()
Out: Hypergeometric functions in x over Rational Field

We emphasize that our package allows for quite general pa-

rameters, even permitting to have nonnegative integers as bottom

parameters as soon as they are compensated by an appropriate top

parameter. Compare:

In: hypergeometric([-1], [-2], x)
Out: hypergeometric((-1,), (-2,), x)
In: hypergeometric([-2], [-1], x)
Out: ValueError: the parameters ((-2,), (-1,))

do not define a hypergeometric function

The main functions we will use throughout the following demon-

stration are 𝑓 (𝑥), Christol’s example of a hypergeometric function

that is not known to be a diagonal; 𝑔(𝑥), where 𝑔(16𝑥2) is the gen-
erating function of Gessel excursions, and the somewhat obscure

function ℎ(𝑥) that illustrates many phenomena.

https://www.oeaw.ac.at/en/
https://www.oeaw.ac.at/en/
https://doi.org/10.55776/I6130
https://oead.at/en/
https://xavier.caruso.ovh/notebook/hypergeometric-functions/
https://doc-pr-41113--sagemath.netlify.app/html/en/reference/functions/sage/functions/hypergeometric_algebraic

ISSAC’26, July 2026, Oldenburg, Germany Xavier Caruso and Florian Fürnsinn

In: f = hypergeometric([1/9, 4/9, 5/9], [1/3, 1], x)
In: g = hypergeometric([1/2, 5/6, 1], [5/3, 2], x)
In: h = hypergeometric([1/5, 1/5, 1/5, 1/5],

[1/3, 3^10/5 - 1], x)

3 Hypergeometric functions over Q

Global Boundedness. Globally bounded hypergeometric func-

tions have been fully classified by Christol [7]. We implement his

criterion in the method is_globally_bounded().

In: f.is_globally_bounded()
Out: True
In: h.is_globally_bounded()
Out: False

Christol’s elegant criterion, essentially depends on the relative

positions of the decimal parts {Δ𝛼𝑖 } and {Δ𝛽𝑖 }, for Δ ∈ Z/𝑑Z,
where 𝑑 is the least common denominator of the parameters.

Algebraicity. Similar in spirit, all algebraic hypergeometric func-

tions have been classified. We implemented the corresponding

criterion in the method is_algebraic().

In: f.is_algebraic()
Out: False
In: g.is_algebraic()
Out: True

In case there are no integer differences between top and bottom

parameters Christol [7], and Beukers and Heckman [1] provided

the classification, a criterion, very similar to the classification of

global boundedness, depending on relative positions of decimal

parts. In case of integer differences, the criterion was extended by

the second author and Yurkevich [8].

Primes With Good Reductions. We say that a series 𝑠 (𝑥) ∈ Q[[𝑥]]
has good reduction at 𝑝 , if all its coefficients have denominator

coprime with 𝑝 . For large enough prime numbers, this property

only depends on the congruence class of 𝑝 modulo 𝑑 . The method

good_reduction_primes() computes this and outputs a set of

prime numbers depending on congruence classes (implemented in

SageMath by the first author [2]).

In: g.good_reduction_primes()
Out: Set of all prime numbers with 2 excluded:

3, 5, 7, 11, ...
In: h.good_reduction_primes()
Out: Set of prime numbers congruent to 1, 8, 11 modulo 15

with 17, 167, 677, 857, ..., 29327, 29387 included
and 23, 83, 113, 173, ..., 58913, 58943 excluded:
11, 17, 31, 41, ...

Similar to the techniques used for the classification of globally

bounded hypergeometric functions, the authors showed in [5] and

[4, § 3.1] that for large enough prime numbers it only depends on

their congruence class modulo 𝑑 , whether the series has nonneg-

ative 𝑝-adic valuation, i.e., can be reduced modulo 𝑝 . Our imple-

mentation tests for small prime numbers 𝑝 , whether the 𝑝-adic

valuation is positive, using the method valuation(), showcased in
Section 5. This is done for all primes smaller than the bound, after

which regularity is ensured, and additionally for one prime number

for each congruence class larger than this bound. We remark that

alternative methods closely related to Christol’s work were detailed

in [5, § 3.1], which are not implemented.

4 Hypergeometric functions over F𝑝
When a hypergeometric function ℎ(𝑥) has good reduction at a

prime 𝑝 , we can formℎ(𝑥) mod 𝑝 ∈ F𝑝 [[𝑥]] and study its properties.
It is known for example that the latter is always algebraic [6, 10, 9,

5, 4]. The main ingredients beyond this result are section operators,
which allow to build what we call Dwork relations (a writing of

hypergeometric function as a polynomial linear combination of

𝑝-th powers of other ones) and eventually to find annihilating

polynomials. All these steps are implemented in our package.

Sections. For an integer 𝑟 , we define the 𝑟 -th section operator

F𝑝 [[𝑥]] −→ F𝑝 [[𝑥]]∑∞
𝑘=0

𝑎𝑘𝑥
𝑘 ↦→ ∑∞

𝑘=0
𝑎𝑘𝑝+𝑟𝑥

𝑘

In [4, §3.2], it was shown that sections of hypergeometric functions

can always be written as a product of a monomial and another

hypergeometric function. Those can be computed using the method

section().

In: f19 = f % 19
In: f19.section(0)
Out: hypergeometric((1/9, 4/9, 5/9), (1/3, 1), x)
In: f19.section(1)
Out: 14*hypergeometric((1/9, 4/9, 5/9), (1/3, 1), x)
In: f19.section(8)
Out: 5*hypergeometric((4/9, 5/9, 10/9), (1, 4/3), x)
In: f19.section(10)
Out: 0

Dwork Relations. From what precedes, one can write a hyperge-

ometric functions as a F𝑝 [𝑥]-linear combination of 𝑝-th powers of

other hypergeometric functions. We call these relations Dwork rela-
tions and they are implemented in the method dwork_relation().
Here the output is a dictionary, where hypergeometric functions

are assigned polynomial coefficients: the sum of the 𝑝-th power

of the keys, weighted by the assigned values gives the original

hypergeometric function.

In: f19.dwork_relation()
Out: {hypergeometric((1/9, 4/9, 5/9), (1/3, 1), x):

8*x^2 + 14*x + 1,
hypergeometric((4/9, 5/9, 10/9), (1, 4/3), x):
5*x^8 + 15*x^7}

Annihilating Polynomials. An annihilating polynomial of a re-

duction of a hypergeometric function can be computed with the

method annihilating_ore_polynomial(), which outputs a poly-

nomial in the Frobenius: to view it as an actual polynomial, one

should replace Frob𝑛 by 𝑋𝑝
𝑛
.

In: f19.annihilating_ore_polynomial()
Out: (18*x^76 + 13*x^57 + 6*x^38 + 17*x^19 + 12)*Frob^2 +

(12*x^38 + 11*x^32 + ... + 18*x^12 + 7)*Frob +
x^30 + 16*x^29 + ... + 6*x^13 + x^12

An algorithm performing this computation, based on iteratively

computing Dwork relations that lead to a system of equations

Hypergeometric Functions in SageMath ISSAC’26, July 2026, Oldenburg, Germany

between finitely many hypergeometric functions, was described in

[5, §3.3].

This algorithm is implemented essentially. We warn the user

that the current implementation relies on a simplified version of the

algorithm, for which it is not proven that the computed system only

involves finitely many hypergeometric series, so it might happen

that computations do not terminate. However, we believe that also

the current implementation can be shown to always terminate.

The polynomials obtained this way are never irreducible. By

their nature as linearized polynomials, they are always divisible by

ℎ(𝑥). However, in general, they will factor even further.

Congruences Modulo Primes. It is possible that two hypergeomet-

ric functions with different set of parameters leads to series which

are congruent modulo 𝑝 , as showcased in the code example below.

In: T.<y> = GF(13)[]
In: h1 = hypergeometric([1/12, 1/4], [1/2], y)
In: h2 = hypergeometric([1/12, 1/6], [1/3], y)
In: h1.power_series(1000) - h2.power_series(1000)
Out: O(y^1000)

The method is_equal_as_series() checks when this happens.

In: h1.is_equal_as_series(h2)
Out: True

We sketch an algorithm to check when this holds. Our method

relies on the following basic observation: two series are congruent

modulo 𝑝 if and only if all their 𝑟 -th sections for 0 ≤ 𝑟 < 𝑝 are

congruent modulo 𝑝 . Besides, in our case of interest, we can com-

pute the sections of an hypergeometric series, which we have seen

to be constant multiples of hypergeometric functions themselves.

We can then proceed recursively. Reusing the arguments we used

for annihilating_polynomial(), we conclude that we will only
encounter finitely many hypergeometric series while proceeding.

To implement this strategy we rely on two auxiliary sets for

recording the progress of the algorithm, namely

• the set 𝑄 (for “queued”) of pairs (𝑓1 (𝑥), 𝑓2 (𝑥)) whose congru-
ence modulo 𝑝 still needs to be checked, and

• the set 𝐶 (for “checked”) of pairs (𝑓1 (𝑥), 𝑓2 (𝑥)) whose congru-
ence modulo 𝑝 has already been checked.

At first glance, we only transfer the problem to deciding whether

a finite number of pairs of hypergeometric functions have the

same reduction. However, by checking that all sections of a pair

of such functions have the same constant term, we check that the

pair of functions agree up to order 𝑥𝑝−1. Thus, by only checking

equality of constant terms, we can decide equality: if for any pair

encountered the constant terms do not agree, the reductions of the

two hypergeometric functions are distinct, otherwise we iterative

conclude equality up to an arbitrary order of precision, i.e., the
reductions coincide.

𝑝-curvatures. For hypergeometric functions with 𝑚 = 𝑛 − 1,

we implement the 𝑝-curvature of the associated hypergeometric

differential operator L(𝜶 , 𝜷 ;𝑥), i.e., a matrix representation of

linear map 𝜕𝑝 acting on F𝑝 [𝑥]⟨𝜕⟩/L(𝜶 , 𝜷 ;𝑥)F𝑝 [𝑥]⟨𝜕⟩.
It can be accessed by the method p_curvature(). Its corank

determines the F𝑝 (𝑥𝑝) dimension of solutions of the differential

operator L(𝜶 , 𝜷 ;𝑥) in F𝑝 (𝑥).

Algorithm 1: are_congruent
input :ℎ1 (𝑥), ℎ2 (𝑥), 𝑝
output :whether ℎ1 (𝑥) ≡ ℎ2 (𝑥) (mod 𝑝)

1 𝑄 ← {(ℎ1 (𝑥), ℎ2 (𝑥))};
2 𝐶 ← ∅;
3 while 𝑄 ≠ ∅ do
4 pop a pair (𝑓1 (𝑥), 𝑓2 (𝑥)) from 𝑄 ;

5 if (𝑓1 (𝑥), 𝑓2 (𝑥)) ∈ 𝐶 or (𝑓2 (𝑥), 𝑓1 (𝑥)) ∈ 𝐶 then
6 continue;

7 for 𝑟 ← 0 to 𝑝−1 do
8 for 𝑖 = 1, 2, write Λ𝑟 (𝑓𝑖 (𝑥)) mod 𝑝 as 𝑎𝑖𝑥

𝑒𝑖𝑔𝑖 (𝑥)
with 𝑎𝑖 ∈ F𝑝 , 𝑒𝑖 ∈ N and 𝑔𝑖 (𝑥) hypergeometric;

9 if 𝑎1𝑥𝑒1 ≠ 𝑎2𝑥𝑒2 in F𝑝 [𝑥] then
10 return false;

11 if 𝑎1𝑥𝑒1 ≠ 0 in F𝑝 [𝑥] then
12 append (𝑔1 (𝑥), 𝑔2 (𝑥)) to 𝑄 ;

13 append (𝑓1 (𝑥), 𝑓2 (𝑥)) to 𝐶;
14 return true;

The corank of the 𝑝-curvature for a given hypergeometric varies

in 𝑝 uniformly [5, Prop. 3.1.20] for large enough primes 𝑝 . The

corresponding congruence classes and exceptions are implemented

via the method p_curvature_coranks() for hypergeometric func-

tions defined over Q.

In: f5 = f % 5
In: f5.p_curvature()
Out: [0 2/(x^5 + 4*x^4) 1/(x^4 + 4*x^3)]

[0 0 0]
[0 0 0]

In: f.p_curvature_coranks()
Out: {1: Empty set of prime numbers,

2: Set of all prime numbers with 3 excluded:
2, 5, 7, 11, ...,

3: Empty set of prime numbers}

5 Hypergeometric functions over Q𝑝
Last, we deal with hypergeometric functions with rational parame-

ters defined over the field of 𝑝-adic numbers Q𝑝 . For 𝑥 ∈ Q𝑝 , we
let val𝑝 (𝑥) denote its 𝑝-adic valuation and we let ∥𝑥 ∥𝑝 = 𝑝−val𝑝 (𝑥)

be its 𝑝-adic norm.

Radius of Convergence. Similar to the complex case, the 𝑝-adic

radius of convergence of a series 𝑠 (𝑥) =
∑
𝑎𝑘𝑥

𝑘 ∈ Q𝑝 [[𝑥]] is
defined as

lim inf𝑘→∞ ∥𝑎𝑘 ∥
−1/𝑘
𝑝 .

When ∥𝑎∥𝑝 (with 𝑎 ∈ Q𝑝) is less than this critical value, the series

𝑠 (𝑎) converges inQ𝑝 . Themethod log_radius_of_convergence()
computes the logarithm in base 𝑝 of the 𝑝-adic radius of conver-

gence of a hypergeometric series.

In: hp5 = h.change_ring(Qp(5))
In: hp5.log_radius_of_convergence()
Out: -7/2

ISSAC’26, July 2026, Oldenburg, Germany Xavier Caruso and Florian Fürnsinn

The algorithm for computing the logarithmic 𝑝-adic radius of con-

vergence of 𝑛𝐹𝑚 (𝜶 , 𝜷 ;𝑥) closely follows the discussion of [4, §2].

We first partition 𝜶 = 𝜶 ′ ⊔𝜶 ′′, 𝜷 = 𝜷 ′ ⊔ 𝜷 ′′, where 𝜶 ′, 𝜷 ′ contain
precisely the 𝑝-adic integers among the parameters. Then, assum-

ing that 𝑛𝐹𝑚 (𝜶 , 𝜷 ;𝑥) is not a polynomial, its logarithmic radius of

convergence is given by the explicit formula

𝑛′−𝑚′−1
𝑝−1 +

∑︁
𝛼∈𝜶 ′′

val𝑝 (𝛼) −
∑︁
𝛽∈𝜷 ′′

val𝑝 (𝛽),

where 𝑛′ and𝑚′ are the cardinalities of 𝜶 ′ and 𝜷 ′ respectively. On
the contrary, when 𝑛𝐹𝑚 (𝜶 , 𝜷 ;𝑥) is a polynomial, the logarithm

radius of convergence is of course infinite.

Valuations. For 𝜈 ∈ Q, we call
val𝑝,𝜈 (𝑠 (𝑥)) ≔ min𝑘≥0 val𝑝 (𝑎𝑘) + 𝜈𝑘

the 𝜈-drifted 𝑝-adic valuation of the series 𝑠 (𝑥). For 𝜈 = 0, it clearly

coincides with the 𝑝-adic Gauss valuation of 𝑠 (𝑥), and for arbitrary
𝜈 , it can be interpreted as the 𝑝-adic valuation of 𝑠 (𝑥) on a disk

of 𝑝-adic radius 𝑝𝜈 centered at 0. In particular, it is −∞ when 𝜈 is

greater than the logarithmic 𝑝-adic radius of convergence.

The method valuation() computes the 𝑝-adic valuation of a

hypergeometric function, and passing a parameter 𝜈 , it computes

the 𝜈-drifted 𝑝-adic valuation. Additionally one can also pass the

option position=True, to also output the minimal index 𝑘 , for

which the valuation is attained for the coefficient in 𝑥𝑘 .

In: fp5 = f.change_ring(Qp(5))
In: fp5.valuation()
Out: 0
In: hp3 = h.change_ring(Qp(3))
In: hp3.valuation(position=True)
Out: (-4, 2)
In: hp5.valuation()
Out: -Infinity
In: hp5.valuation(-7/2)
Out: 0

The authors described in [4, §2.2] an algorithm how to compute the

𝜈-drifted 𝑝-adic valuations of hypergeometric series. It relies on a

recursion over the tropical semi-ring and the Floyd-Warshall algo-

rithm to compute the weak transitive closure of a tropical matrix.

Keeping track of the minimal index 𝑘 , for which the valuation is

attained for the coefficient ℎ𝑘 is easily possible, as explained in [4,

Rem. 2.6].

𝑝-adic Evaluations. When 𝑎 is a 𝑝-adic number with norm less

than the radius of convergence, the value ℎ(𝑎) makes sense. Our

package allows to compute it using the following obvious syntax.

In: fp5(5)
Out: 1 + 3*5^2 + 5^4 + ... + O(5^20)
In: hp3(1/3)
Out: 3^-5 + 2*3^-1 + 1 + 2*3 + ... + O(3^13)

The implemented algorithm is outlined in [4, §2.4]: given a 𝑝-adic

number 𝑎 ∈ Q𝑝 , with val𝑝 (𝑎) = 𝜈 within the radius of conver-

gence, and a precision 𝑁 , we first compute a bound 𝐾 , such than

val𝑝 (ℎ𝑘𝑎𝑘) > 𝑁 for all 𝑘 > 𝐾 . Thus ℎ(𝑎) = ∑𝐾
𝑘=0

ℎ𝑘𝑎
𝑘 + 𝑂 (𝑝𝑁).

The computation of 𝐾 depends on the choice of a parameter be-

tween 𝜈 and the radius of convergence; the heuristics of our choice

is also explained in loc. cit.

Newton Polygons. The Newton polygon of a series

∑
𝑘 𝑎𝑘𝑥

𝑘
is

the convex hull in R2
of the points (𝑘, 𝑣) with 𝑣 ≥ val𝑝 (ℎ𝑘).

For hypergeometric series, it can be computed with the method

newton_polygon(). Passing an argument 𝜈 , with 𝜈 chosen smaller

than the logarithmic 𝑝-adic radius of convergence, can help to

handle cases where the Newton polygon has an infinite number of

slopes. It shrinks the domain of definition of the hypergeometric

series to provide approximations of the Newton polygon.

In: hp3.newton_polygon()
Out: ValueError: infinite Newton polygon; try to truncate

it by giving a log radius less than 2
In: NP = hp3.newton_polygon(7/4)
In: NP
Out: Infinite Newton polygon with 5 vertices:

(0, 0), (2, -4), (3, -4), (4, -3), (7, 2)
ending by an infinite line of slope 7/4

In: NP.plot() +
point([(i, hp3[i].valuation()) for i in range(8)])

1 2 3 4 5 6 7

−4

−3

−2

−1

1

2

3

0

We implemented the algorithm of [4, §2.3], which is basically a

generalization of the algorithm to compute drifted valuations.

References
[1] F. Beukers and G. Heckman. 1989. Monodromy for the hypergeometric function

𝑛𝐹𝑛−1 . Inventiones Mathematicae, 95, 2, 325–354. doi: 10.1007/BF01393900.
[2] X. Caruso. 2025. Subsets of primes defined by congruence conditions. https://g

ithub.com/sagemath/sage/pull/41122.

[3] X. Caruso and F. Fürnsinn. 2025. Algebraic and modular properties of hyperge-

ometric functions. https://github.com/sagemath/sage/pull/41113.

[4] X. Caruso and F. Fürnsinn. 2026. Algorithms for algebraic and arithmetic

attributes of hypergeometric functions. eprint: arXiv:2601.16105 (math.NT).

[5] X. Caruso, F. Fürnsinn, and D. Vargas-Montoya. 2025. Galois groups of reduc-

tions modulo p of D-finite series. eprint: arXiv:2504.09429 (math.NT).

[6] G. Christol. 1986. Fonctions et éléments algébriques. Pacific Journal of Mathe-
matics, 125, 1, 1–37. doi: 10.2140/pjm.1986.125.1.

[7] G. Christol. 1986. Fonctions hypergéométriques bornées. Groupe de travail
d’analyse ultramétrique. exp. no 8 14, 1–16. http://www.numdam.org/item

/GAU_1986-1987__14__A4_0.pdf.

[8] F. Fürnsinn and S. Yurkevich. 2024. Algebraicity of hypergeometric func-

tions with arbitrary parameters. Bulletin of the London Mathematical Society,
blms.13103. doi: 10.1112/blms.13103.

[9] D. Vargas-Montoya. 2024. Algebraicity modulo 𝑝 of generalized hypergeomet-

ric series 𝑛𝐹𝑛−1 . Journal of Number Theory, 259, 273–321. doi: 10.1016/j.jnt.20
24.01.004.

[10] D. Vargas-Montoya. 2021. Algébricité modulo 𝑝 , séries hypergéométriques et

structures de frobenius fortes. Bulletin de la Société mathématique de France.
doi: 10.24033/bsmf.2834.

https://doi.org/10.1007/BF01393900
https://github.com/sagemath/sage/pull/41122
https://github.com/sagemath/sage/pull/41122
https://github.com/sagemath/sage/pull/41113
arXiv:2601.16105
arXiv:2504.09429
https://doi.org/10.2140/pjm.1986.125.1
http://www.numdam.org/item/GAU_1986-1987__14__A4_0.pdf
http://www.numdam.org/item/GAU_1986-1987__14__A4_0.pdf
https://doi.org/10.1112/blms.13103
https://doi.org/10.1016/j.jnt.2024.01.004
https://doi.org/10.1016/j.jnt.2024.01.004
https://doi.org/10.24033/bsmf.2834

	Abstract
	1 Introduction
	2 Setup
	3 Hypergeometric functions over Q
	4 Hypergeometric functions over Fp
	5 Hypergeometric functions over Qp

