Algebraic and Arithmetic Attributes
of Hypergeometric Functions in SageMath

Xavier Caruso
CNRS; IMB, Université de Bordeaux
Talence, France
xavier@caruso.ovh

Abstract

We report on implementations for algorithms treating algebraic and
arithmetic properties of hypergeometric functions in the computer
algebra system SageMath. We treat hypergeometric series over the
rational numbers, over finite fields, and over the p-adics. Among
other things, we provide implementations deciding algebraicity,
computing valuations, and computing minimal polynomials in pos-
itive characteristic.

1 Introduction
A hypergeometric function with rational top parameters & = (ay, . . .,

ap) € Q" and bottom parameters f = (p1, ..., fm) € Q™ is defined
as the power series

BRE N G G
P @B = s .

where (y)g =y(y+1)---(y +k — 1) denotes the rising factorial or
Pochhammer symbol.
The hypergeometric function ,Fp, (&, f; x) is the solution of the

€Qllxll, (@

differential equation £ (e, f, x)y(x) = 0 with, denoting 9 = x%,
L(a, B, x) = (x(d+a1) - - - (9+an) — (E-P1) - - - (—Pm))-

A power series f(x) € K|[[x]] is called algebraic if there exists
a nonzero polynomial P(x,y) € K[x,y], such that f(x,y(x)) = 0.
Similarly, a power series f(x) € Q[[x]] is called D-finite, if there ex-
ists a nonzero differential operator L € Q[x](9), such that Lf(x) =
0. Moreover, it is called globally bounded, if it has a a positive radius
of convergence and there exist two nonzero integers «, € Z, such
that ff (ax) € Z[[x]].

Hypergeometric functions are clearly D-finite, and the sets of
parameters for which they are algebraic or globally bounded are
fully classified. Moreover, their reductions modulo p in Fp[[x]]
are algebraic, whenever they are defined. These properties make
them ideal test cases for conjectures about algebraic and arithmetic
properties of D-finite series. The need to use a software for for-
mulating and checking such conjectures appeared to the authors
when they worked, jointly with Vargas-Montoya, on Galois groups
of reductions modulo primes of D-finite series [5].

The present article is the outcome of this observation. It reports
on an open source SageMath package designed to manipulate hyper-
geometric functions in various situations: over the rationals, over

The second named author was funded by a DOC Fellowship (27150) of the Aus-
trian Academy of Sciences at the University of Vienna. Further he thanks the
French-Austrian project EAGLES (ANR-22-CE91-0007 & FWF grant 10.55776/16130)
for financial support.

The authors thank Austria’s Agency for Education and Internationalisation (OeAD)
and Campus France for providing funding for research stays via WTZ collaboration
project/Amadeus project FR02/2024.

Florian Firnsinn
University of Vienna, Faculty of Mathematics
Vienna, Austria
florian.fuernsinn@univie.ac.at

finite fields and over p-adic fields. To provide these functionalities
it was necessary to develop new algorithms. They are presented
mostly in [4].

At the time being, our package is submitted for integration in a
future release of SageMath [3]. In this paper, we shortly showcase
the main features of our package. Our presentation is complemented
by an interactive worksheet gathering all the examples presented
below, available at:
https://xavier.caruso.ovh/notebook/hypergeometric-functions/
This interactive worksheet supports editing the examples and ex-
ploring new cases.

For the complete documentation of our package, we refer to
the Section Hypergeometric functions over arbitrary rings in the
reference manual of SageMath, available online here.

2 Setup

Hypergeometric functions are implemented in SageMath as ele-
ments of a symbolic ring.

In: f = hypergeometric([1/3, 2/3]1, [1/2], x)
In: f

Out: hypergeometric((1/3, 2/3), (1/2,), x)
In: f.parent()

Out: Symbolic Ring

We propose an implementation of algebraic and arithmetic proper-
ties of them, accessed by creating hypergeometric functions where
the argument is an element of (the fraction field of) a polynomial
ring or a power series ring.

In: S.<x> = QQ[]

In: f = hypergeometric([1/3, 2/3], [1/2]1, x)

In: f

Out: hypergeometric((1/3, 2/3), (1/2,), x)

In: f.parent()

Out: Hypergeometric functions in x over Rational Field

We emphasize that our package allows for quite general pa-
rameters, even permitting to have nonnegative integers as bottom
parameters as soon as they are compensated by an appropriate top
parameter. Compare:

In: hypergeometric([-1]1, [-2], x)
Out: hypergeometric((-1,), (-2,), x)
In: hypergeometric([-2], [-1], x)
Out: ValueError: the parameters ((-2,), (-1,))
do not define a hypergeometric function
The main functions we will use throughout the following demon-
stration are f(x), Christol’s example of a hypergeometric function
that is not known to be a diagonal; g(x), where g(16x?) is the gen-
erating function of Gessel excursions, and the somewhat obscure
function h(x) that illustrates many phenomena.

https://www.oeaw.ac.at/en/
https://www.oeaw.ac.at/en/
https://doi.org/10.55776/I6130
https://oead.at/en/
https://xavier.caruso.ovh/notebook/hypergeometric-functions/
https://doc-pr-41113--sagemath.netlify.app/html/en/reference/functions/sage/functions/hypergeometric_algebraic

ISSAC’26, July 2026, Oldenburg, Germany

In: f = hypergeometric([1/9, 4/9, 5/91, [1/3, 11, x)
In: g = hypergeometric([1/2, 5/6, 11, [5/3, 2], x)
In: h = hypergeometric([1/5, 1/5, 1/5, 1/5],

[1/3, 3*10/5 - 1], x)

3 Hypergeometric functions over Q

Global Boundedness. Globally bounded hypergeometric func-
tions have been fully classified by Christol [7]. We implement his
criterion in the method is_globally_bounded().

In: f.is_globally_bounded()

Out: True
In: h.is_globally_bounded()
Out: False

Christol’s elegant criterion, essentially depends on the relative
positions of the decimal parts {Aa;} and {Af;}, for A € Z/dZ,
where d is the least common denominator of the parameters.

Algebraicity. Similar in spirit, all algebraic hypergeometric func-
tions have been classified. We implemented the corresponding
criterion in the method is_algebraic().

In: f.is_algebraic()

Out: False
In: g.is_algebraic()
Qut: True

In case there are no integer differences between top and bottom
parameters Christol [7], and Beukers and Heckman [1] provided
the classification, a criterion, very similar to the classification of
global boundedness, depending on relative positions of decimal
parts. In case of integer differences, the criterion was extended by
the second author and Yurkevich [8].

Primes With Good Reductions. We say that a series s(x) € Q[[x]]
has good reduction at p, if all its coefficients have denominator
coprime with p. For large enough prime numbers, this property
only depends on the congruence class of p modulo d. The method
good_reduction_primes() computes this and outputs a set of
prime numbers depending on congruence classes (implemented in
SageMath by the first author [2]).

In: g.good_reduction_primes()

Out: Set of all prime numbers with 2 excluded:

3,5, 7, 11,
In: h.good_reduction_primes()

Out: Set of prime numbers congruent to 1, 8, 11 modulo 15
with 17, 167, 677, 857, ., 29327, 29387 included
and 23, 83, 113, 173, ..., 58913, 58943 excluded:

1, 17, 31, 41,
Similar to the techniques used for the classification of globally
bounded hypergeometric functions, the authors showed in [5] and
[4, § 3.1] that for large enough prime numbers it only depends on
their congruence class modulo d, whether the series has nonneg-
ative p-adic valuation, i.e., can be reduced modulo p. Our imple-
mentation tests for small prime numbers p, whether the p-adic
valuation is positive, using the method valuation(), showcased in
Section 5. This is done for all primes smaller than the bound, after
which regularity is ensured, and additionally for one prime number
for each congruence class larger than this bound. We remark that

Xavier Caruso and Florian Fiirnsinn

alternative methods closely related to Christol’s work were detailed
in [5, § 3.1], which are not implemented.

4 Hypergeometric functions over F,

When a hypergeometric function h(x) has good reduction at a
prime p, we can form h(x) mod p € F, [[x]] and study its properties.
It is known for example that the latter is always algebraic [6, 10, 9,
5, 4]. The main ingredients beyond this result are section operators,
which allow to build what we call Dwork relations (a writing of
hypergeometric function as a polynomial linear combination of
p-th powers of other ones) and eventually to find annihilating
polynomials. All these steps are implemented in our package.

Sections. For an integer r, we define the r-th section operator

Epllx]l
Sy ax®

— Fpllx]l

k
— Z]o(ozo akp+rx

In [4, §3.2], it was shown that sections of hypergeometric functions
can always be written as a product of a monomial and another
hypergeometric function. Those can be computed using the method
section().
In: f19 = f % 19
In: f19.section(@)
Out: hypergeometric((1/9, 4/9, 5/9), (1/3, 1), x)
In: f19.section(1)
Out: 14xhypergeometric((1/9, 4/9, 5/9), (1/3, 1), x)
In: f19.section(8)
Out: 5xhypergeometric((4/9, 5/9, 10/9), (1, 4/3), x)
In: f19.section(10)
Out: @

Dwork Relations. From what precedes, one can write a hyperge-
ometric functions as a Fy, [x]-linear combination of p-th powers of
other hypergeometric functions. We call these relations Dwork rela-
tions and they are implemented in the method dwork_relation().
Here the output is a dictionary, where hypergeometric functions
are assigned polynomial coefficients: the sum of the p-th power
of the keys, weighted by the assigned values gives the original
hypergeometric function.

In: f19.dwork_relation()

Out: {hypergeometric((1/9, 4/9, 5/9), (1/3, 1), x):
8kx"2 + Td4xx + 1,
hypergeometric((4/9, 5/9, 10/9), (1, 4/3), x):
5%x*8 + 15%x*7}

Annihilating Polynomials. An annihilating polynomial of a re-
duction of a hypergeometric function can be computed with the
method annihilating_ore_polynomial(), which outputs a poly-
nomial in the Frobenius: to view it as an actual polynomial, one
should replace Frob” by XP".

In: f19.annihilating_ore_polynomial()

Out: (18%x*76 + 13*x"57 + 6%xx"38 + 17#%x*19 + 12)*Frob*2 +
(12%x"38 + 11%x*32 + ... + 18*%x*12 + 7)*Frob +
X*30 + 16%x%29 + ... + 6*xx"13 + x*12

An algorithm performing this computation, based on iteratively
computing Dwork relations that lead to a system of equations

Hypergeometric Functions in SageMath

between finitely many hypergeometric functions, was described in
[5, §3.3].

This algorithm is implemented essentially. We warn the user
that the current implementation relies on a simplified version of the
algorithm, for which it is not proven that the computed system only
involves finitely many hypergeometric series, so it might happen
that computations do not terminate. However, we believe that also
the current implementation can be shown to always terminate.

The polynomials obtained this way are never irreducible. By
their nature as linearized polynomials, they are always divisible by
h(x). However, in general, they will factor even further.

Congruences Modulo Primes. 1t is possible that two hypergeomet-
ric functions with different set of parameters leads to series which
are congruent modulo p, as showcased in the code example below.

In: T.<y> = GF(13)[]

In: h1 = hypergeometric([1/12, 1/4], [1/2], y)
In: h2 = hypergeometric([1/12, 1/61, [1/3]1, y)
In: hil.power_series(1000) - h2.power_series(1000)
Out: 0(y*1000)

The method is_equal_as_series() checks when this happens.

In: hl.is_equal_as_series(h2)
Qut: True

We sketch an algorithm to check when this holds. Our method
relies on the following basic observation: two series are congruent
modulo p if and only if all their r-th sections for 0 < r < p are
congruent modulo p. Besides, in our case of interest, we can com-
pute the sections of an hypergeometric series, which we have seen
to be constant multiples of hypergeometric functions themselves.
We can then proceed recursively. Reusing the arguments we used
for annihilating_polynomial(), we conclude that we will only
encounter finitely many hypergeometric series while proceeding.

To implement this strategy we rely on two auxiliary sets for
recording the progress of the algorithm, namely

o the set Q (for “queued”) of pairs (fi(x), f2(x)) whose congru-
ence modulo p still needs to be checked, and

o the set C (for “checked”) of pairs (fi (x), f2(x)) whose congru-
ence modulo p has already been checked.

At first glance, we only transfer the problem to deciding whether
a finite number of pairs of hypergeometric functions have the
same reduction. However, by checking that all sections of a pair
of such functions have the same constant term, we check that the
pair of functions agree up to order x”~1. Thus, by only checking
equality of constant terms, we can decide equality: if for any pair
encountered the constant terms do not agree, the reductions of the
two hypergeometric functions are distinct, otherwise we iterative
conclude equality up to an arbitrary order of precision, i.e., the
reductions coincide.

p-curvatures. For hypergeometric functions with m = n — 1,
we implement the p-curvature of the associated hypergeometric
differential operator £(«, ff;x), i.e., a matrix representation of
linear map o acting on Fp [x](9)/ L (e, B; x)Fp[x](3).

It can be accessed by the method p_curvature(). Its corank
determines the Fj, (x”) dimension of solutions of the differential
operator L(a, B;x) in Fp(x).

ISSAC’26, July 2026, Oldenburg, Germany

Algorithm 1: are_congruent

input :hi(x), ha(x),p
output: whether A; (x) = ha(x) (mod p)
1 Q — {(h1(x), h2(x))};
2 C « 0;
3 while Q # 0 do
4 pop a pair (fi(x), fa(x)) from Q;
5 if (fi(x), f2(x)) € Cor (f2(x), fi(x)) € C then

6 L continue;

7 forr « 0 to p—1do

8 for i = 1,2, write A, (fi(x)) mod p as a;jx®g;(x)
with a; € Fp, e; € N and g;(x) hypergeometric;

9 if a1x® # ax® inFp[x] then

10 L return false;

1 if a1x® # 0 inFp[x] then

12 L append (g1(x), g2(x)) to Q;

13 | append (fi(x), f2(x)) to C;

14 return true;

The corank of the p-curvature for a given hypergeometric varies
in p uniformly [5, Prop. 3.1.20] for large enough primes p. The
corresponding congruence classes and exceptions are implemented
via the method p_curvature_coranks() for hypergeometric func-
tions defined over Q.

Inn f5=f%5

In: f5.p_curvature()

out: [0 2/(X"5 + 4xx*4) 1/(x"4 + 4xx3)]
[0 0 0]
[0) 0]

In: f.p_curvature_coranks()
Out: {1: Empty set of prime numbers,
2: Set of all prime numbers with 3 excluded:
2,5, 7,11, ...,
3: Empty set of prime numbers}

5 Hypergeometric functions over Q,

Last, we deal with hypergeometric functions with rational parame-
ters defined over the field of p-adic numbers Q. For x € Q;, we
let val, (x) denote its p-adic valuation and we let ||x||, = pValp ()

be its p-adic norm.

Radius of Convergence. Similar to the complex case, the p-adic
radius of convergence of a series s(x) = 2, akxk € Qpllx]l is
defined as

o -1/k
liminfe o flall, <.
When ||a||p (with a € Qp) is less than this critical value, the series
s(a) converges in Q. The method log_radius_of_convergence()
computes the logarithm in base p of the p-adic radius of conver-
gence of a hypergeometric series.
In: hp5 = h.change_ring(Qp(5))
In: hp5.log_radius_of_convergence()
Out: -7/2

ISSAC’26, July 2026, Oldenburg, Germany

The algorithm for computing the logarithmic p-adic radius of con-
vergence of ,F, (&, B;x) closely follows the discussion of [4, §2].
We first partition @ = &’ Ua”’, = B’ U B”/, where &’, B’ contain
precisely the p-adic integers among the parameters. Then, assum-
ing that ,F,, (@, B;x) is not a polynomial, its logarithmic radius of
convergence is given by the explicit formula

n’-m’-1
o Z valy(a) - Z val, (),
S P

where n” and m’ are the cardinalities of &’ and B’ respectively. On
the contrary, when ,Fy,; (a, f;x) is a polynomial, the logarithm
radius of convergence is of course infinite.

Valuations. For v € Q, we call
valp,y(s(x)) = ming o valp(ag) + vk

the v-drifted p-adic valuation of the series s(x). For v = 0, it clearly
coincides with the p-adic Gauss valuation of s(x), and for arbitrary
v, it can be interpreted as the p-adic valuation of s(x) on a disk
of p-adic radius p” centered at 0. In particular, it is —co when v is
greater than the logarithmic p-adic radius of convergence.

The method valuation() computes the p-adic valuation of a
hypergeometric function, and passing a parameter v, it computes
the v-drifted p-adic valuation. Additionally one can also pass the
option position=True, to also output the minimal index k, for

which the valuation is attained for the coefficient in x*.

In: fp5 = f.change_ring(Qp(5))
In: fp5.valuation()
OQut: @
In: hp3 = h.change_ring(Qp(3))
In: hp3.valuation(position=True)
Out: (-4, 2)
In: hp5.valuation()
Out: -Infinity
In: hp5.valuation(-7/2)
OQut: @

The authors described in [4, §2.2] an algorithm how to compute the
v-drifted p-adic valuations of hypergeometric series. It relies on a
recursion over the tropical semi-ring and the Floyd-Warshall algo-
rithm to compute the weak transitive closure of a tropical matrix.
Keeping track of the minimal index k, for which the valuation is
attained for the coefficient hy. is easily possible, as explained in [4,
Rem. 2.6].

p-adic Evaluations. When a is a p-adic number with norm less
than the radius of convergence, the value h(a) makes sense. Our
package allows to compute it using the following obvious syntax.
In: fp5(5)
Qut: 1 + 3%5%2 + 5%4 + ...
In: hp3(1/3)
Qut: 3*-5 + 2%3%-1 + 1 + 2%3 + ...

+ 0(5"20)

+ 0(3*13)

The implemented algorithm is outlined in [4, §2.4]: given a p-adic
number a € Qp, with valp(a) = v within the radius of conver-
gence, and a precision N, we first compute a bound K, such than
valy (ha®) > N for all k > K. Thus h(a) = X hea* + O(pN).
The computation of K depends on the choice of a parameter be-
tween v and the radius of convergence; the heuristics of our choice
is also explained in loc. cit.

Xavier Caruso and Florian Fiirnsinn

Newton Polygons. The Newton polygon of a series > akxk is
the convex hull in R? of the points (k,v) withv > valp (hy).

For hypergeometric series, it can be computed with the method
newton_polygon(). Passing an argument v, with v chosen smaller
than the logarithmic p-adic radius of convergence, can help to
handle cases where the Newton polygon has an infinite number of
slopes. It shrinks the domain of definition of the hypergeometric

series to provide approximations of the Newton polygon.

In: hp3.newton_polygon()
Out: ValueError: infinite Newton polygon; try to truncate
it by giving a log radius less than 2
In: NP = hp3.newton_polygon(7/4)
In: NP
Out: Infinite Newton polygon with 5 vertices:
(@, @, (2, -4, 3, -4, (4, -3, (7, 2
ending by an infinite line of slope 7/4
In: NP.plot() +
point([(i, hp3[il.valuation()) for i in range(8)1)

We implemented the algorithm of [4, §2.3], which is basically a
generalization of the algorithm to compute drifted valuations.

References

[1] F.Beukers and G. Heckman. 1989. Monodromy for the hypergeometric function
nFpn—1. Inventiones Mathematicae, 95, 2, 325-354. por: 10.1007/BF01393900.

[2] X. Caruso. 2025. Subsets of primes defined by congruence conditions. https://g
ithub.com/sagemath/sage/pull/41122.

[3] X Caruso and F. Fiirnsinn. 2025. Algebraic and modular properties of hyperge-
ometric functions. https://github.com/sagemath/sage/pull/41113.

[4] X. Caruso and F. Furnsinn. 2026. Algorithms for algebraic and arithmetic
attributes of hypergeometric functions. eprint: arXiv:2601.16105 (math.NT).

[5] X Caruso, F. Fiirnsinn, and D. Vargas-Montoya. 2025. Galois groups of reduc-
tions modulo p of D-finite series. eprint: arXiv:2504.09429 (math.NT).

[6] G. Christol. 1986. Fonctions et éléments algébriques. Pacific Journal of Mathe-
matics, 125, 1, 1-37. por: 10.2140/pjm.1986.125.1.

[7]1 G. Christol. 1986. Fonctions hypergéométriques bornées. Groupe de travail
d’analyse ultramétrique. exp. no 8 14, 1-16. http://www.numdam.org/item
/GAU_1986-1987__14__A4_0.pdf.

[8] F. Firnsinn and S. Yurkevich. 2024. Algebraicity of hypergeometric func-
tions with arbitrary parameters. Bulletin of the London Mathematical Society,
blms.13103. por: 10.1112/blms.13103.

[9] D. Vargas-Montoya. 2024. Algebraicity modulo p of generalized hypergeomet-
ric series ,, Fp,—1. Journal of Number Theory, 259, 273-321. por: 10.1016/j.jnt.20
24.01.004.

[10] D. Vargas-Montoya. 2021. Algébricité modulo p, séries hypergéométriques et
structures de frobenius fortes. Bulletin de la Société mathématique de France.
Dor: 10.24033/bsmf.2834.

https://doi.org/10.1007/BF01393900
https://github.com/sagemath/sage/pull/41122
https://github.com/sagemath/sage/pull/41122
https://github.com/sagemath/sage/pull/41113
arXiv:2601.16105
arXiv:2504.09429
https://doi.org/10.2140/pjm.1986.125.1
http://www.numdam.org/item/GAU_1986-1987__14__A4_0.pdf
http://www.numdam.org/item/GAU_1986-1987__14__A4_0.pdf
https://doi.org/10.1112/blms.13103
https://doi.org/10.1016/j.jnt.2024.01.004
https://doi.org/10.1016/j.jnt.2024.01.004
https://doi.org/10.24033/bsmf.2834

	Abstract
	1 Introduction
	2 Setup
	3 Hypergeometric functions over Q
	4 Hypergeometric functions over Fp
	5 Hypergeometric functions over Qp

