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Abstract
We discuss algorithms for arithmetic properties of hypergeometric

functions. Most notably, we are able to compute the 𝑝-adic valu-

ation of a hypergeometric function on any disk of radius smaller

than the 𝑝-adic radius of convergence. This we use, building on

work of Christol, to determine the set of prime numbers modulo

which it can be reduced. Moreover, we describe an algorithm to find

an annihilating polynomial of the reduction of a hypergeometric

function modulo 𝑝 .
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1 Introduction
A hypergeometric function with top parameters 𝜶 := (𝛼1, . . . , 𝛼𝑛) ∈
C𝑛 and bottom parameters 𝜷 := (𝛽1, . . . , 𝛽𝑚) ∈ C𝑚 is defined as the

power series

H (𝜶 , 𝜷 ;𝑥) :=
∞∑︁
𝑘=0

(𝛼1)𝑘 · · · (𝛼𝑛)𝑘
(𝛽1)𝑘 · · · (𝛽𝑚)𝑘

· 𝑥𝑘 ∈ C[[𝑥]],

where (𝛾)𝑘 := 𝛾 (𝛾 + 1) · · · (𝛾 + 𝑘 − 1) denotes the rising factorial or
Pochhammer symbol.
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We restrict ourselves to rational parameters for our investigation;

in particular our hypergeometric functions are elements of Q[[𝑥]].
To simplify the exposition, we will also suppose that none of the

𝛼𝑖 , 𝛽 𝑗 are nonpositive integers. We mention nevertheless that all

our algorithms extend without this hypothesis, assuming only that

the hypergeometric functionH (𝜶 , 𝜷 ;𝑥) is well-defined.
Usually in the literature, hypergeometric functions are normal-

ized differently. The hypergeometric function 𝑛𝐹𝑚 (𝜶 , 𝜷 ;𝑥) is de-
fined as H (𝜶 , 𝜷 ′

;𝑥), with 𝜷 ′ = (𝛽1, . . . , 𝛽𝑚, 1), i.e., it includes an
additional parameter 1 at the bottom. Conversely, H (𝜶 , 𝜷 ;𝑥) =

𝑛+1𝐹𝑚 (𝜶 ′, 𝜷 ;𝑥) with 𝜶 ′ = (𝛼1, . . . , 𝛼𝑛, 1). The classical notation is

convenient to derive the differential equation(
𝑥 (𝜗+𝛼1) · · · (𝜗+𝛼𝑛) − 𝜗 (𝜗−𝛽1) · · · (𝜗−𝛽𝑚)

)
· 𝑛𝐹𝑚 (𝜶 , 𝜷 ;𝑥) = 0,

where 𝜗 = 𝑥 d

d𝑥
. It shows that hypergeometric functions are D-finite,

i.e., they satisfy a nonzero linear differential equation with polyno-

mial coefficients. However, for our arguments and algorithms, it

proves more convenient not to insist on the additional parameter 1.

Hypergeometric functions play an important role in combina-

torics and physics, for example the generating functions of many

well-known sequences, such as the Catalan numbers, are of this

shape. At the same time, hypergeometric functions serve as test

examples for conjectures on algebraic and D-finite series. For exam-

ple, Christol’s conjectured in [12, 13] that globally bounded D-finite

series (i.e., D-finite series with positive radius of convergence, that

can be reduced modulo almost all primes) can be written as diago-

nals of multivariate algebraic power series and then gave the first

evidences by studying the class of hypergeometric functions. As of

2026, Christol’s conjecture is still unsolved, even in the hypergeo-

metric case, despite recent progress [5, 3, 4, 1, 6].

On a different note, we recall that a power series 𝑓 (𝑥) ∈ 𝐾 [[𝑥]]
is called algebraic, if there exists a nonzero polynomial 𝑃 [𝑥,𝑦] ∈
𝐾 [𝑥,𝑦], such that 𝑃 (𝑥, 𝑓 (𝑥)) = 0. Although D-finite power series

𝑓 (𝑥) ∈ Q[[𝑥]] are usually not algebraic, it is frequently the case that
their reductions modulo the primes are (see [10, Subsection 2.1] for

many examples). For example, if Christol’s conjecture on diagonals

proves to be true, Furstenberg’s theorem [17] would imply that

the reduction of any globally bounded D-finite series is algebraic.

In the article [10], written jointly with Vargas-Montoya, we went

further in this direction and proposed a conjecture predicting what

the Galois groups of D-finite functions modulo the primes could be.

Hypergeometric series form a class of examples for which alge-

braicity properties are well studied and understood: while there

is only a small set of parameters (𝜶 , 𝜷) leading to algebraic series

over Q [22, 20, 21, 15, 12, 2, 18, 16], it is known that reductions

modulo 𝑝 , when they exist, are always algebraic [12, 11, 24, 23] and

certain Galois groups were computed in [10, Subsection 3.3].
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Our contributions. The aim of the present article is to develop

algorithmic tools for hypergeometric series, focusing particularly

on reductions modulo primes and their algebraicity properties.

To start with, we describe an algorithm to determine the set of

prime numbers, for which a given hypergeometric function can be

reduced (Subsection 3.1). Our algorithm heavily relies on routines to

compute the 𝑝-adic valuation of hypergeometric functions, which

themselves find their roots in Christol’s article [12], while similar

approaches were also studied in [14, Prop. 24]. We develop those

routines in Subsection 2.2 and extend them to the computation of

Newton polygons (Subsection 2.3) and evaluation of hypergeomet-

ric functions at 𝑝-adic arguments (Subsection 2.4).

Then, building on the work of Christol, Vargas-Montoya and the

authors [12, 11, 24, 23, 10], we design an algorithm to compute an

annihilating polynomial of any hypergeometric series modulo 𝑝

(Subsection 3.3). We underline that our approach gives in addition

a new proof of algebraicity without any assumption on the param-

eters (𝜶 , 𝜷), nor on the prime 𝑝 (aforementioned references often

exclude certain cases for simplicity). In the same spirit, we mention

that, while most of the questions considered in this paper simplify

when the prime number 𝑝 is chosen large enough with respect to

the absolute value of the parameters and their common denom-

inator, we especially take care to treat small primes as well. We

believe that it is important for applications, given that large primes

usually lead to huge outputs, e.g. huge annihilating polynomials,

from which it looks more difficult to extract relevant information.

All the algorithms discussed in this article have been imple-

mented in SageMath [9, 8] and can be tested online at the URL:

https://xavier.caruso.ovh/notebook/hypergeometric-functions/

2 Valuations (the 𝑝-adic picture)
In this section, we fix a prime number 𝑝 together with two tuples

of parameters 𝜶 := (𝛼1, . . . , 𝛼𝑛) ∈ Q𝑛 and 𝜷 := (𝛽1, . . . , 𝛽𝑚) ∈ Q𝑚 .
The aim of this section is to study the behavior of the 𝑝-adic valua-

tion, denoted val𝑝 , of the coefficients of associated hypergeometric

seriesH (𝜶 , 𝜷 ;𝑥).
To start with, we observe that, if 𝛾 is a rational number with

val𝑝 (𝛾) < 0, one has val𝑝 ((𝛾)𝑘 ) = 𝑘 · val𝑝 (𝛾). Hence the valua-

tions of the coefficients of H (𝜶 , 𝜷 ;𝑥) are directly related to the

valuations of the coefficients of H (𝜶 ′, 𝜷 ′
;𝑥) where the new pa-

rameters 𝜶 ′
and 𝜷 ′

are obtained from 𝜶 and 𝜷 by removing the

𝛼𝑖 and 𝛽 𝑗 with negative 𝑝-adic valuation. For this reason, we will

always assume in what follows that val𝑝 (𝛼𝑖 ) and val𝑝 (𝛽 𝑗 ) are all
nonnegative. We set ℎ(𝑥) ≔ H (𝜶 , 𝜷 ;𝑥) and we write ℎ𝑘 for the

coefficient of ℎ(𝑥) in 𝑥𝑘 .

2.1 Zigzag functions
We fix a positive integer 𝑟 > 0. Let 𝑤𝑟 : N → N be the sequence

defined by𝑤𝑟 (0) = 0 and the recurrence relation

𝑤𝑟 (𝑘 + 1) =𝑤𝑟 (𝑘) +
��{1 ≤ 𝑖 ≤ 𝑛 : 𝑘 + 𝛼𝑖 ≡ 0 mod 𝑝𝑟 }

��
−

��{1 ≤ 𝑗 ≤𝑚 : 𝑘 + 𝛽 𝑗 ≡ 0 mod 𝑝𝑟 }
��.

We follow Kedlaya’s terminology, see for example [19], and call

𝑤𝑟 a zigzag function. We start by noticing that

∀𝑘 ≥ 0, 𝑤𝑟 (𝑘 + 𝑝𝑟 ) =𝑤𝑟 (𝑘) + (𝑛 −𝑚). (1)

Besides, the function 𝑤𝑟 does not vary often. More precisely, we

define the set Γ ≔ {1, 𝛼1, . . . , 𝛼𝑛, 𝛽1, . . . , 𝛽𝑚} and denote by 𝑠 its

cardinality. Let also

0 = 𝜉𝑟,0 ≤ 𝜉𝑟,1 ≤ · · · ≤ 𝜉𝑟,𝑠−1 < 𝑝𝑟

be the reductions modulo 𝑝𝑟 of 1−𝛾 , for 𝛾 ∈ Γ, sorted in ascending

order. We prolong the sequence (𝜉𝑟,𝑖 )𝑖 by repeating the same values

translated by 𝑝𝑟 , 2𝑝𝑟 , etc. Formally, we set 𝜉𝑟,𝑖+𝑠 = 𝜉𝑟,𝑖 + 𝑝𝑟 for

𝑖 ≥ 0. Then, on each interval 𝐼𝑟,𝑖 := [𝜉𝑟,𝑖 , 𝜉𝑟,𝑖+1), the sequence𝑤𝑟 is
constant.

We note that, the reductions modulo 𝑝𝑟 of a rational number

𝑥 with denominator coprime with 𝑝 , can be read off on its 𝑝-adic

expansion. More precisely, if

𝑥 = 𝑥0 + 𝑥1𝑝 + 𝑥2𝑝2 + · · · ∈ Z𝑝

we have 𝑥 mod 𝑝𝑟 = 𝑥0+𝑥1𝑝+· · ·+𝑥𝑟−1𝑝𝑟−1. If we assumemoreover

that 𝑥 is not a nonnegative integer, its 𝑝-adic expansion is not finite,

which implies that 𝑥 mod 𝑝𝑟 goes to infinity when 𝑟 grows. More

precisely, using that the sequence (𝑥𝑖 ) is ultimately periodic (since 𝑥

is a rational number), we find that 𝑥 mod 𝑝𝑟 grows at least linearly

in 𝑝𝑟 . As a consequence, we derive that 𝜉𝑟,1 ≥ 𝑐𝑝𝑟 for some constant

𝑐 depending only on 𝜶 and 𝜷 .

Lemma 2.1. For 𝑘 ≥ 0, we have val𝑝 (ℎ𝑘 ) =
∑∞
𝑟=1𝑤𝑟 (𝑘).

The proof of the lemma follows the standard argument used to

prove Legendre’s formula giving the 𝑝-adic valuation of a factorial

(see also [12, Equation (6)]).

Noticing that𝑤𝑟 vanishes on the interval [0, 𝜉𝑟,1), we derive from
the estimation 𝜉𝑟,1 ≥ 𝑐𝑝𝑟 that the the sum of Theorem 2.1 is finite

for any given 𝑘 ; more precisely it contains at most log𝑝 (𝑘) +𝑂 (1)
terms.

Proposition 2.2. We have lim𝑘→∞
val𝑝 (ℎ𝑘 )

𝑘
= 𝑛−𝑚

𝑝−1 .

Proof. For 𝑘 < 𝑝𝑟 , we have −𝑚 ≤ 𝑤𝑟 (𝑘) ≤ 𝑛. Using Equa-

tion (1), this implies that there exists some constant𝑀 , such that���𝑤𝑟 (𝑘) − 𝑘 ·𝑛−𝑚𝑝𝑟 ��� ≤ 𝑀
for arbitrary 𝑘 . Summing over 𝑟 and using a geometric sum and the

triangle inequality, we then find���val𝑝 (ℎ𝑘 ) − 𝑘 ·𝑛−𝑚𝑝−1 + 𝑘 · 𝑛−𝑚
𝑝𝑠 (𝑝−1)

��� ≤ 𝑀𝑠,
where 𝑠 = log𝑝 (𝑘) +𝑂 (1) is the number of summands involved in

the sum of Theorem 2.1. The term 𝑘 · 𝑛−𝑚
𝑝𝑠 (𝑝−1) then remains bounded

when 𝑘 grows, proving that���val𝑝 (ℎ𝑘 ) − 𝑘 ·𝑛−𝑚𝑝−1

��� ≤ 𝑀 log𝑝 (𝑘) +𝑂 (1) .

The proposition follows. □

2.2 Drifted valuations
The valuation of the hypergeometric series ℎ(𝑥) is defined as the

minimum of val𝑝 (ℎ𝑘 ) when 𝑘 varies. More generally, we define its

𝜈-drifted valuation by

val𝑝,𝜈 (ℎ(𝑥)) ≔ min

𝑘≥0
val𝑝 (ℎ𝑘 ) + 𝜈𝑘.

Working with drifted valuations is important to handle smoothly

the reduction to parameters whose denominators are not divisible

https://xavier.caruso.ovh/notebook/hypergeometric-functions/
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by 𝑝 , and will be also crucial when we will study Newton polygons

in Subsection 2.3.

2.2.1 Recurrence over the tropical semiring. It follows from The-

orem 2.2 that val𝑝,𝜈 (ℎ(𝑥)) = −∞ when 𝜈 < 𝜈0 ≔
𝑚−𝑛
𝑝−1 . From now

on, we will then assume that 𝜈 ≥ 𝜈0. For 𝑟 ∈ N we introduce the

drifted partial sums

𝜎𝑟 : N → Q, 𝑘 ↦→ 𝜈𝑘 + ∑𝑟
𝑠=1𝑤𝑠 (𝑘).

It directly follows from Theorem 2.1 that

∀𝑘 ≥ 0, val𝑝 (ℎ𝑘 ) + 𝜈𝑘 = lim

𝑟→∞
𝜎𝑟 (𝑘).

Besides, the sequence 𝜎𝑟 satisfies the periodicity condition

∀𝑘 ≥ 0, 𝜎𝑟 (𝑘 + 𝑝𝑟 ) = 𝜎𝑟 (𝑘) + (𝜈 − 𝜈0)𝑝𝑟 + 𝜈0 . (2)

We recall that we have defined in Subsection 2.1 the numbers 𝜉𝑟,𝑖
and the intervals 𝐼𝑟,𝑖 = [𝜉𝑟,𝑖 , 𝜉𝑟,𝑖+1), in such a way that the function

𝑤𝑟 is constant on each 𝐼𝑟,𝑖 . We let 𝜇𝑟,𝑖 denote the minimum of 𝜎𝑟 on

this interval (with the convention that 𝜇𝑟,𝑖 = +∞ if 𝐼𝑟,𝑖 is empty). We

are going the prove that the 𝜇𝑟,𝑖 are subject to recurrence relations

which allows to compute them recursively. First of all, with respect

to the variable 𝑖 , we have the relation

𝜇𝑟,𝑖+𝑠 = 𝜇𝑟,𝑖 + (𝜈 − 𝜈0)𝑝𝑟 + 𝜈0 (3)

which follows directly from Equation (2). Hence the knowledge of

the first 𝑠 terms of the sequence (𝜇𝑟,𝑖 )𝑖≥0 is enough to reconstruct

the whole sequence.

We now move to the variable 𝑟 . We first note that the 𝜇1,𝑖 are

easily computed since 𝜎1 is affine on all intervals 𝐼1,𝑖 . The key

observation to go from 𝑟−1 to 𝑟 is that each 𝜉𝑟,𝑖 , being the reduction
modulo 𝑝𝑟 of one of the 1−𝛾 for 𝛾 ∈ Γ, also appears in the sequence

(𝜉𝑟−1, 𝑗 ) 𝑗 . In other words, there exists an index 𝑗𝑟,𝑖 such that 𝜉𝑟,𝑖 =

𝜉𝑟−1, 𝑗𝑟,𝑖 . Setting 𝐽𝑟,𝑖 = Z ∩ [ 𝑗𝑟,𝑖 , 𝑗𝑟,𝑖+1), we deduce that 𝐼𝑟,𝑖 is the

disjoint union of the 𝐼𝑟−1, 𝑗 for 𝑗 varying in 𝐽𝑟,𝑖 and then

𝜇𝑟,𝑖 =𝑤𝑟 (𝜉𝑟,𝑖 ) + min

𝑗∈ 𝐽𝑟,𝑖
𝜇𝑟−1, 𝑗 . (4)

It is convenient to reformulate what precedes in the language

of tropical algebra. We let T denote the tropical semiring Q ⊔
{+∞} equipped with the operations ⊕ = min and ⊙ = +. We set

𝝁𝑟 = (𝜇𝑟,0, . . . , 𝜇𝑟,𝑠−1) and view it as a row vector over T . Then

Equation (4) translates to a relation of the form

𝝁𝑟 = 𝝁𝑟−1 ⊙ 𝑇𝑟 (5)

where 𝑇𝑟 is a square matrix over T of size 𝑠 , which is explicit in

terms of the functions𝑤𝑟 .

2.2.2 Halting criterion. Equation (5) gives an efficient recursive

method to compute the 𝜇𝑟,𝑖 . Besides, remembering that 𝜉𝑟,1 goes to

infinity when 𝑟 grows, we find that val𝑝,𝜈 (ℎ(𝑥)) = lim𝑟→∞ 𝜇𝑟,0.
It then only remains to find a criterion to detect when the limit

is attained.

Let 𝑑 denote a common denominator of the elements of Γ, and
let 𝑒 be the multiplicative order of 𝑝 modulo 𝑑 .

Lemma 2.3. If 𝑟 fulfills the three following requirements
• 𝑟 > 𝑒 + log𝑝 max

{
1, |1−𝛾1 |, . . . , |1−𝛾𝑠−1 |

}
,

• 𝑝𝑟 (𝜈 − 𝜈0) + 𝜈0 ≥𝑚𝑒
• 𝜇𝑟,𝑖 ≥ 𝜇𝑟,0 +𝑚𝑒 for all 𝑖 ∈ {1, . . . , 𝑠−1},

then 𝜇𝑟 ′,0 = 𝜇𝑟,0 for all 𝑟 ′ ≥ 𝑟 .

The proof of Theorem 2.3 uses the following result.

Lemma 2.4. Let 𝑥 ∈ Z(𝑝 ) and let 𝑥 =
∑
𝑟≥0 𝑥𝑟𝑝

𝑟 be its 𝑝-adic
expansion, with 𝑥𝑟 ∈ {0, 1, . . . , 𝑝−1} for all 𝑟 . Let 𝑒 be the multiplica-
tive order of 𝑝 modulo the denominator of 𝑥 . Then 𝑥𝑟+𝑒 = 𝑥𝑟 for all
𝑟 > 𝑒 +max(0, log𝑝 |𝑥 |).

Proof. Set 𝑑 ≔ 𝑝𝑒 − 1. It follows from the definition of 𝑒 that

𝑑𝑥 is an integer. Therefore we can write 𝑥 = 𝑎 + 𝑏
𝑑
with 𝑎, 𝑏 ∈ Z

and 0 ≤ 𝑏 < 𝑑 . If 𝑏0, . . . , 𝑏𝑒−1 are the digits in base 𝑝 of 𝑏, the 𝑝-adic

expansion of
𝑏
𝑑
is

∑∞
𝑖=0 𝑏𝑖 mod 𝑒 · 𝑝𝑖 . Hence, it is periodic (from the

start) of period 𝑒 .

We first assume that 𝑎 ≥ 0. Then its 𝑝-adic expansion is finite and

has 1+ ⌊log𝑝 𝑎⌋ digits. Moreover, while performing the addition 𝑎+
𝑏
𝑑
, the last carry can move at most by 𝑒 digits given that 𝑏0, . . . , 𝑏𝑒−1

cannot be all equal to 𝑝−1. The lemma follows in this case.

The case 𝑎 = −1 is similar by writing down the subtraction.

Finally, if 𝑎 < −1, we replace 𝑥 by −1−𝑥 . This has the effect of
replacing every digit 𝑥𝑟 of 𝑥 by 𝑝−1 − 𝑥𝑟 , which does not change

the periodicity properties. So, we are back to the case 𝑎 ≥ 0. □

Proof of Lemma 2.3. Given Equation (3), the second and third

requirements together imply that 𝜇𝑟,𝑖 ≥ 𝜇𝑟,0 + 𝑚𝑒 for all 𝑖 ≥ 1.

Therefore, using Equation (4), we find 𝜇𝑟+1,0 = 𝜇𝑟,0 (since 0 ∈ 𝐽𝑟+1,0)
and 𝜇𝑟+1,𝑖 ≥ 𝜇𝑟,0+𝑚(𝑒−1) for all 𝑖 ≥ 1 (since𝑤𝑟+1 (𝜉𝑟+1, 𝑖) ≥ −𝑚 for

all 𝑖). Repeating the same argument, we obtain by induction on 𝑟 ′

that, 𝜇𝑟 ′,0 = 𝜇𝑟,0 and

∀𝑖 ≥ 1, 𝜇𝑟 ′,𝑖 ≥ 𝜇𝑟,𝑖 +𝑚(𝑒 + 𝑟 − 𝑟 ′) .
for 𝑟 ′ ∈ {𝑟+1, . . . , 𝑟+𝑒}. In order to continue the induction beyond

𝑟+𝑒 , we observe that the first assumption and Theorem 2.4 ensure

that the values 1−𝛾 mod 𝑝𝑟 , for 𝛾 ∈ Γ, are sorted in the same way

as 1−𝛾 mod 𝑝𝑟+𝑒 . Thus, the values 𝜉𝑖,𝑟 and 𝜉𝑖,𝑟+𝑒 correspond to the

same parameter for all 𝑖 . We deduce that 𝜉𝑟+𝑒,𝑖 ≥ 𝜉𝑟,𝑖 + 𝑝𝑟 for 𝑖 < 𝑠 .
Applying Equation (4) with 𝑟+1, . . . , 𝑟+𝑒 as before, we find

𝜇𝑟+𝑒,𝑖 ≥ 𝜇𝑟,𝑖 + (𝜈 − 𝜈0)𝑝𝑟 + 𝜈0 −𝑚𝑒
≥ 𝜇𝑟,0 +𝑚𝑒 = 𝜇𝑟+𝑒,0 +𝑚𝑒.

Therefore, the requirements of the lemma are also fulfilled with 𝑟

replaced by 𝑟+𝑒 , and the induction can go on. □

When 𝜈 > 𝜈0, it follows from Theorem 2.2 that the 𝜇𝑟,𝑖 with 𝑖 > 0

grow at least linearly in 𝑝𝑟 . The condition of Theorem 2.3 will then

be rapidly fulfilled.

On the contrary, when 𝜈 = 𝜈0, we rely on the following lemma.

Lemma 2.5. We assume 𝜈 = 𝜈0 and let 𝑟0 be the smallest integer
greater than 𝑒+log𝑝 max

{
1, |1−𝛾1 |, . . . , |1−𝛾𝑠−1 |

}
. Then the sequence

(𝑇𝑟 )𝑟≥𝑟0 is periodic of period 𝑒 .

Proof. Let 𝑟 ≥ 𝑟0. We have seen in the proof of Theorem 2.3 that

𝜉𝑟,𝑖 and 𝜉𝑟+𝑒,𝑖 correspond to the same (top or bottom) parameter for

all 𝑖 . It follows that𝑤𝑟+𝑒 (𝜉𝑟+𝑒,𝑖 ) =𝑤𝑟 (𝜉𝑟,𝑖 ) and 𝐽𝑟+𝑒,𝑖 = 𝐽𝑟,𝑖 for all 𝑖 .
Therefore 𝑇𝑟+𝑒 =𝑇𝑟 by Equation (4). □

We set 𝑇 ≔ 𝑇𝑟0+1 ⊙ 𝑇𝑟0+2 ⊙ · · · ⊙ 𝑇𝑟0+𝑒 ∈ 𝑀𝑠 (T ). Then 𝝁𝑟0+ℓ𝑒 =

𝝁𝑟0 ⊙ 𝑇 ⊙ℓ
for all ℓ ≥ 0. Noticing in addition that the sequence

(𝜇𝑟,0)𝑟≥0 is nonincreasing, we find that val𝑝,𝜈 (ℎ(𝑥)) is the first co-
ordinate of 𝝁𝑟0𝑇

+
where

𝑇 + ≔ 𝑇 +𝑇 ⊙2 +𝑇 ⊙3 + · · · (6)
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is the so-calledweak transitive closure of𝑇 (see [7, §1.6.2]). The latter

can be efficiently computed using the Floyd–Warshall algorithm

(see [7, Algorithm 1.6.21]), which then completes our algorithm.

We underline nonetheless that the sum of Equation (6) may

diverge. This is however not an issue; indeed, this case is detected

by the Floyd–Warshall algorithm and it corresponds to the situation

where val𝑝,𝜈 (ℎ(𝑥)) = −∞. Hence, we can conclude in all cases.

Remark 2.6. We can adapt the previous algorithm so that it

computes in addition the smallest integer𝑘 such that val𝑝 (ℎ𝑘 )+𝜈𝑘 =

val𝑝,𝜈 (ℎ(𝑥)). For doing this, we compute the integers

𝑘𝑟,𝑖 ≔ min

{
𝑘 ∈ 𝐼𝑟,𝑖 : 𝜎𝑟 (ℎ𝑘 ) = 𝜇𝑟,𝑖

}
at the same time as the 𝜇𝑟,𝑖 while running the algorithm.We recover

𝑘 at the end of the computation using 𝑘 = lim𝑟→∞ 𝑘𝑟,0.

2.2.3 An example. We consider the parameters 𝜶 =
(
1

3
, 4
3

)
and

𝜷 =
(
2

3
, 1

)
, set ℎ(𝑥) =H(𝜶 , 𝜷 ;𝑥) and want to compute 𝑣𝑝,0 (ℎ(𝑥)).

We start with 𝑝 = 7. We then have 𝜈0 = 0 and we take 𝜈 = 0 as

well. Given that 𝑝 ≡ 1 (mod 3), we find that the reductions of the

1−𝛼𝑖 and 1−𝛽 𝑗 modulo 𝑝𝑟 are

𝜉𝑟,0 = 0, 𝜉𝑟,1 =
𝑝𝑟 −1
3
, 𝜉𝑟,2 =

𝑝𝑟+2
3
, 𝜉𝑟,3 =

2𝑝𝑟+1
3

corresponding to the parameters 1,
4

3
,
1

3
and

2

3
respectively. The

zigzag function𝑤𝑟 is 𝑝
𝑟
-periodic and

• it takes the value 0 on the interval [0, 𝜉𝑟,1),
• it takes the value 1 on the interval [𝜉𝑟,1, 𝜉𝑟,2),
• it takes the value 2 on the interval [𝜉𝑟,2, 𝜉𝑟,3),
• it takes the value 1 on the interval [𝜉𝑟,3, 𝑝𝑟 ).

From this, we infer the 𝐽𝑟,𝑖 (see Figure 1) and the matrices 𝑇𝑟 ∈
𝑀4 (T ); they are independent of 𝑟 and given by:

𝑇𝑟 =

©­­­«
0 +∞ 2 1

0 1 2 1

0 +∞ 2 1

0 +∞ 2 1

ª®®®¬ .
The Floyd–Warshall algorithm gives 𝑇 + =𝑇𝑟 . We finally compute

𝝁
1
= (0, 1, 2, 1) and conclude that val𝑝,0 (ℎ(𝑥)) is the first coordinate

of the vector 𝝁
1
⊙ 𝑇 + = (0, 2, 2, 1), i.e. val𝑝,0 (ℎ(𝑥)) = 0.

We now take 𝑝 = 11 and continue with 𝜈 = 0. In this case, the

“𝜉-ordering” depends on the parity of 𝑟 . Precisely, if 𝑟 is even,

𝜉𝑟,0 = 0, 𝜉𝑟,1 =
𝑝𝑟 −1
3
, 𝜉𝑟,2 =

𝑝𝑟+2
3
, 𝜉𝑟,3 =

2𝑝𝑟+1
3

corresponding to the parameters 1,
4

3
,
1

3
and

2

3
respectively as before.

However, if 𝑟 is odd, we have

𝜉𝑟,0 = 0, 𝜉𝑟,1 =
𝑝𝑟+1
3
, 𝜉𝑟,2 =

2𝑝𝑟 −1
3

, 𝜉𝑟,3 =
2𝑝𝑟+2

3

corresponding to the parameters 1,
2

3
,
4

3
,
1

3
in this order. Therefore,

the matrix 𝑇𝑟 also depends on the parity of 𝑟 ; a calculation gives

𝑇2𝑟 ′ =

©­­­«
0 +∞ 2 1

0 +∞ 2 1

0 1 2 1

0 +∞ 2 1

ª®®®¬ ; 𝑇2𝑟 ′+1 =
©­­­«
0 −1 +∞ 1

0 −1 0 1

0 −1 +∞ 1

0 −1 +∞ 1

ª®®®¬ .
Hence

𝑇 =𝑇2𝑟 ′ ⊙ 𝑇2𝑟 ′+1 =
©­­­«
0 −1 +∞ 1

0 −1 +∞ 1

0 −1 1 1

0 −1 +∞ 1

ª®®®¬ .

In this case, the sum of Equation (6) defining 𝑇 +
does not converge

(this is due to the coefficient−1 on the diagonal) and so, we conclude
that val𝑝,0 (ℎ(𝑥)) = −∞.

In § 3.1 we will see that all primes essentially follow the pattern

displayed for either 𝑝 = 7 or 𝑝 = 11.

2.2.4 Complexity. Our algorithm manipulates rational numbers

whose size can significantly grow during the execution. For this

reason, we will estimate its complexity by counting bit operations.

In what follows, we use the standard soft-𝑂 notation 𝑂∼ (−) to
hide logarithmic factors. We also assume that FFT-based algorithms

are used to perform multiplications on integers; an operation on

two integers of 𝐵 bits then requires at most 𝑂∼ (𝐵) bit operations.

Proposition 2.7. Let 𝑟0 be defined as in Theorem 2.5 and let 𝐷 be
a common denominator of 𝜈 and 𝜈0. Then, the algorithm described in
§§2.2.1–2.2.2 performs at most

• Case 𝜈 = 𝜈0:
𝑂∼ (

(𝑛+𝑚)2𝑟0 log 𝑝 + (𝑛+𝑚)3 log(𝑟0𝑝)
)

• Case 𝜈 > 𝜈0:
𝑂∼ (

(𝑛+𝑚)2 (𝑟0 log 𝑝 + log𝐷)
(
𝑟0 log 𝑝 − logmin(1, 𝜈−𝜈0)

) )
bit operations.

Proof. For simplicity, we set𝑤 = 𝑛 +𝑚.

We first observe that, throughout the algorithm, the computer

only manipulates rational numbers in
1

𝐷
Z. Besides, the finite entries

of the matrix 𝑇𝑟 are all in 𝑂
(
𝑤 + (𝜈 − 𝜈0)𝑝𝑟

)
.

To start with, we assume that 𝜈 = 𝜈0. In this case,𝐷 is a divisor of

𝑝−1, so𝐷 ≤ 𝑝 . We need to compute 𝝁𝑟 until 𝑟 = 𝑟0+𝑒 =𝑂 (𝑟0). For a
fixed 𝑟 , computing 𝝁𝑟 from 𝝁𝑟−1 requires𝑂 (𝑠2) ⊂ 𝑂 (𝑤2) operations
on rational numbers of order of magnitude 𝑂 (𝑤𝑟 ). This can be

done within 𝑂∼ (𝑤2
log(𝑟𝑝)) bit operations. In total, computing all

the requires 𝜇𝑟 then costs 𝑂∼ (𝑤2𝑟0 log 𝑝) bit operations. Finally,
applying the Floyd–Warshall requires 𝑂 (𝑠3) additional operations
on rational numbers in𝑂 (𝑤𝑟0); this costs at most𝑂∼ (𝑤3

log(𝑟0𝑝))
bit operations.

We now move to the case where 𝜈 > 𝜈0. Let 𝑅 be the first integer

for which the requirements of Theorem 2.3 are fulfilled. It follows

from the proof of Theorem 2.3 that 𝜉𝑟,1 ≥ 𝑝𝑟−𝑟0 for all 𝑟 . Following
the proof of Proposition 2.2, we deduce that

𝜇𝑟,1 ≥ (𝜈 − 𝜈0)𝑝𝑟−𝑟0 −𝑤𝑟 +𝑂 (𝑝𝑟0 )

which in turn implies that 𝑝𝑅 =𝑂∼
(
𝑤𝑝𝑟0

𝜈−𝜈0 + 𝑝2𝑟0
)
.

Hence the finite entries of the matrices 𝑇𝑟 with 𝑟 ≤ 𝑅 are all in

𝑂∼ (𝑤𝑝𝑟0 + 𝑝2𝑟0 ). As in the first part of the proof, we deduce that

the computations of 𝝁
1
, . . . , 𝝁𝑅 requires at most

𝑂∼ (
𝑤2𝑅(𝑟0 log 𝑝 + log𝐷)

)
bit operations. We conclude the proof by noticing that

𝑅 =𝑂
(
log𝑤 + 𝑟0 log 𝑝 − logmin(1, 𝜈−𝜈0)

)
. □

2.3 Newton polygons
The Newton polygon NP(ℎ) of the series ℎ(𝑥) is, by definition, the

topological closure of the convex hull in R2
of the points of coor-

dinates (𝑘, 𝑣) with 𝑣 ≥ val𝑝 (ℎ𝑘 ). The Newton polygon is closely
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𝜉𝑟,𝑖 :
0 𝑝𝑟 2𝑝𝑟 3𝑝𝑟 4𝑝𝑟 5𝑝𝑟 6𝑝𝑟 𝑝𝑟+1

𝜉𝑟+1,𝑖 :

𝐽𝑟,0 = {0, 1, . . . , 8} 𝐽𝑟,1 = {9} 𝐽𝑟,2 = {10, 11, . . . , 18} 𝐽𝑟,3 = {19, 20, . . . , 27}

Figure 1: The sets 𝐽𝑟,𝑖 for 𝜶 =
(
1

3
, 4
3

)
, 𝜷 =

(
2

3
, 1

)
and 𝑝 = 7

related to the drifted valuations; indeed, for 𝜈 ≥ 𝜈0, we have

val𝑝,𝜈 (ℎ(𝑥)) = min

(𝑎,𝑏 ) ∈NP(ℎ)
𝑎𝜈 + 𝑏.

To model these relations, we introduce two new tropical semirings:

(1) the set F of concave functions 𝑓 : [𝜈0,+∞) → R ⊔ {+∞}; we
endow F with the pointwise operations ⊕ =min and ⊙ = +

(2) the set N of closed convex subsets 𝑁 ⊂ R2
which are stable

under the translations by (0, 1) and (1, 𝜈0), endowed with

𝑁1 ⊕ 𝑁2 = convex hull of 𝑁1 ∪ 𝑁2,

𝑁1 ⊙ 𝑁2 = 𝑁1 + 𝑁2 (Minkowski sum).

We have a map 𝜀 : N → F that takes 𝑁 to the function

𝜀 (𝑁 ) : 𝜈 ↦→ min(𝑎,𝑏 ) ∈𝑁 𝑎𝜈 + 𝑏.

One checks that 𝜀 is a morphism of semirings. Moreover, the theo-

rem of Hahn–Banach implies that it is an isomorphism, its inverse

being given by the map that takes 𝑓 ∈ F to the subset of R2
con-

sisting of pairs (𝑎, 𝑏) such that 𝑓 (𝜈) ≤ 𝑎𝜈 +𝑏. A decisive advantage

of N (over F ) is that it provides concrete algorithmic perspectives,

given that handling operations in N is effectively doable (at least

when the convex sets are described by finite amounts of data).

2.3.1 Recurrence over N . We are now in position to design a uni-

form version (with respect to 𝜈) of the algorithm of Subsection 2.2;

roughly speaking, it simply consists in replacing T by N every-

where. Precisely, we define the 𝜇𝑟,𝑖 ∈ N by the relations

𝜇1,𝑖 =
⊕

𝜉∈𝐼1,𝑖 𝜀
−1 (𝜈 ↦→ 𝜉𝜈 +𝑤1 (𝜉)

)
,

𝜇𝑟,𝑖 = 𝜀
−1 (𝜈 ↦→ 𝑤𝑟 (𝜉𝑟,𝑖 )

)
⊙

(⊕
𝑗∈ 𝐽𝑟,𝑖 𝜇𝑟−1, 𝑗

)
.

We notice in addition that 𝜀−1 of the affine function 𝜈 ↦→ 𝑎𝜈 + 𝑏 is

simply the convex subset of R2
with one vertex at (𝑎, 𝑏) and two

rays in the directions (0, 1) and (1, 𝜈0). In particular, multiplying

by 𝜀−1 (𝜈 ↦→ 𝑤𝑟 (𝜉𝑟,𝑖 )) is nothing but translating the convex set by
the vector (0,𝑤𝑟 (𝜉𝑟,𝑖 )).

As in Subsection 2.2, the 𝜇𝑟,𝑖 are subject to a recurrence relation

with respect to 𝑖 , which reads

𝜇𝑟,𝑖+𝑠 = 𝜇𝑟,𝑖 ⊙ 𝜀−1
(
𝜈 ↦→ (𝜈 − 𝜈0)𝑝𝑟 + 𝜈0

)
(compare with Equation (3)). This allows to only retain the 𝑠 first

terms of the sequences (𝜇𝑟,𝑖 )𝑖≥0: setting 𝝁𝑟 = (𝜇𝑟,0, . . . , 𝜇𝑟,𝑠−1), we
have a relation of the form 𝝁𝑟 = 𝝁𝑟−1 ⊙𝑇𝑟 where𝑇𝑟 is now a square

matrix of size 𝑠 with entries in N .

Finally, the Newton polygon of ℎ(𝑥) is obtained as the first coor-
dinate of ⊕

ℓ≥1 𝝁1
⊙ 𝑇2 ⊙ · · · ⊙ 𝑇ℓ . (7)

When val𝑝,𝜇0 (ℎ(𝑥)) is finite, it follows from what we did in Subsec-

tion 2.2 and [7, Proposition 1.6.15] that the above infinite sum can

be truncated to ℓ ≤ 𝑟0 + 𝑠 (with the notation introduced at the end

of Subsection 2.2) without changing the final result. We then get a

complete algorithm to compute NP(ℎ).
On the contrary, when val𝑝,𝜇0 (ℎ(𝑥)) = −∞, the sum of Equa-

tion (7) converges but it cannot be reduced to a finite sum: each

additional term provides more and more accurate approximations

of NP(ℎ). This is perfectly in line with the fact that NP(ℎ) has an
infinite number of slopes in this case. An option to nevertheless

obtain a meaningful result is to shrink a bit the domain of definition

of the functions and replace 𝜈0 by another bound 𝜈1 > 𝜈0. Doing

this, the sum of Equation (7) again reduces to a finite sum, and we

can decide when the computation can be stopped using the condi-

tion of Theorem 2.3; indeed, inequalities of functions correspond to

inclusions of Newton polygons and so, they can easily be checked.

2.3.2 An example. We continue the example of Subsection 2.2.3.

We start with 𝑝 = 7. In this case, finding the Newton polygon is easy.

Indeed, we already know that val𝑝,0 (ℎ(𝑥)) = 0. Besides, we derive

from Proposition 2.2 that val𝑝 (ℎ𝑘 ) = 𝑜 (𝑘). This readily implies

NP(ℎ) = R+ × R+
.

Let us nonetheless apply our algorithm and show that it outputs

the same result. In our case, the vector 𝝁
1
and the matrix 𝑇𝑟 ∈

𝑀4 (N) are the following ones:

𝝁
1
=

(
(0, 0) (2, 1) (3, 2) (5, 1)

)
,

𝑇𝑟 =

©­­­­­­­­­­­­­­­­«

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(2𝑝𝑟−1, 1)

(3𝑝𝑟−1, 2)

(3𝑝𝑟−1, 2)

(2𝑝𝑟−1, 2)

(2𝑝𝑟−1, 2)

(5𝑝𝑟−1, 1)

(5𝑝𝑟−1, 1)

(5𝑝𝑟−1, 1)

(4𝑝𝑟−1, 1)

ª®®®®®®®®®®®®®®®®¬

.

We recall that the Newton polygon we are looking for is the limit of

the first coordinate of Equation (7) when 𝑟 goes to infinity. In our

case, we observe that all the entries of 𝝁
1
and𝑇𝑟 are subsets of R+ ×

R+
. Therefore, for all 𝑟 ≥ 2, the four coordinates of 𝝁

1
⊙𝑇2 ⊙ · · · ⊙𝑇𝑟

are also subsets of R+ × R+
. We conclude that NP(ℎ) = R+ × R+

as

expected.

When 𝑝 = 11, on the contrary, we are in the situation where

val𝑝,0 (ℎ(𝑥)) = −∞, meaning that the limit of Equation (7) is not

reached at finite level. In this case, the matrices 𝑇𝑟 are those shown

on Figure 2 and we can see that the entries of the second column

of 𝑇𝑟 are not subsets of R+ × R+
when 𝑟 is odd. What happens

more precisely is that each summand in Equation (7) corresponding

to an odd number ℓ = 2𝑟 ′ − 1 introduces a new vertex 𝑉𝑟 ′ with
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𝑦-coordinate equal to −𝑟 ′. This vertex then propagates to the first

coordinate and eventually contributes to the Newton polygon.

As explained in the description of the algorithm, we can avoid

this by slightly degrading the precision and adding a ray in the

direction (0, 𝜈1) (with 𝜈1 > 0 fixed) to all entries of 𝝁
1
and 𝑇𝑟 . This

will absorb the vertices 𝑉𝑟 ′ for 𝑟
′
large enough.

Remark 2.8. Carrying out all computations, one finds that the

vertices of NP(ℎ) are the points

(
4
𝑝2𝑟

′ −1
𝑝2−1 ,−𝑟

′
)
with 𝑟 ′ ∈ N. In

this particular example, they then exhibit very strong regularity

patterns. One may wonder whether this is a general phenomenon

and, if it is, if we can use it to compute NP(ℎ) and/or to accelerate

the computation of val𝑝,𝜈 (ℎ(𝑥)) when 𝜈 > 𝜈0.

2.4 Application to 𝑝-adic evaluation
Proposition 2.2 ensures that, if val𝑝 (𝑥) > 𝜈0, then val𝑝 (ℎ𝑘𝑥𝑘 ) goes
to infinity when 𝑘 grows, and so the hypergeometric series

∑
𝑘 ℎ𝑘𝑥

𝑘

converges for the 𝑝-adic topology. Hence, it defines a function

ℎ : 𝐵𝜈0 → Q𝑝 where Q𝑝 is the field of 𝑝-adic numbers and 𝐵𝜈0 is its

open disc centered at 0 of radius 𝑝−𝜈0 . In what follows, we briefly

outline an algorithm to compute ℎ(𝑎) at precision 𝑂 (𝑝𝑁 ) for given
𝑎 ∈ 𝐵𝜈0 and 𝑁 ∈ Z.

Lemma 2.9. Let 𝜈 be a real number the interval (𝜈0, val𝑝 (𝑎)). Then
val𝑘 (ℎ𝑘𝑎𝑘 ) ≥ 𝑁 for all 𝑘 ≥ 𝐾 ≔

𝑁−val𝑝,𝜈 (ℎ (𝑥 ) )
val𝑝 (𝑎)−𝜈 .

Proof. The lemma follows from the inequality

val𝑝 (ℎ𝑘𝑎𝑘 ) ≥ val𝑝,𝜈 (ℎ(𝑥)) + 𝑘 · (val𝑝 (𝑎) − 𝜈)
which is a direct consequence of the definition of val𝑝,𝜈 (ℎ(𝑥)). □

To compute ℎ(𝑎), we then proceed as follows:

(1) we choose a rational number 𝜈 ∈ (𝜈0, val𝑝 (𝑎)),
(2) we compute val𝑝,𝜈 (ℎ(𝑥)) using the algorithm of §2.2,

(3) we compute the bound 𝐾 of Lemma 2.9,

(4) we output

∑
𝑘<𝐾 ℎ𝑘𝑎

𝑘 +𝑂 (𝑝𝑁 ).
Although the previous algorithm works for any value of 𝜈 , bad

choices could lead to huge truncation bounds and so, dramatic per-

formances. Nonetheless, we know from the proof of Proposition 2.2

that the order of magnitude of 𝜈0𝑘 − val𝑝 (ℎ𝑘 ) is about log𝑝 (𝑘). Us-
ing this approximation and solving the corresponding optimization

problem, one finds the following heuristic for the choice of 𝜈 :

𝜈 = 𝜈0 +
val𝑝 (𝑎)−𝜈0

𝑁
∈ (𝜈0, val𝑝 (𝑎)).

In practice, this choice leads to 𝐾 close to
𝑁

val𝑝 (𝑎)−𝜈0 , which is basi-

cally the best we can hope for.

3 Reduction modulo primes
We fix a prime number 𝑝 and we let Z(𝑝 ) denote the subring of Q
consisting of rational numbers 𝑥 such that val𝑝 (𝑥) ≥ 0, i.e. rational
numbers

𝑎
𝑏
with gcd(𝑏, 𝑝) = 1. Any element of Z(𝑝 ) can be reduced

modulo 𝑝 , yielding a result in F𝑝 ≔ Z/𝑝Z.
It may happen for some parameters 𝜶 , 𝜷 that all the coefficients

(ℎ𝑘 )𝑘≥0 of ℎ(𝑥) = H (𝜶 , 𝜷 ;𝑥) lie in Z(𝑝 ) or, equivalently, that

val𝑝,0 (ℎ(𝑥)) ≥ 0. In this case, we say that ℎ(𝑥) has good reduction
modulo 𝑝 and we write ℎ(𝑥) mod 𝑝 for the image of ℎ(𝑥) in F𝑝 [[𝑥]].

3.1 Good reduction primes
We fix two tuples to parameters 𝜶 ∈ Q𝑛 and 𝜷 ∈ Q𝑚 and set

ℎ(𝑥) = ∑
𝑘≥0 ℎ𝑘𝑥

𝑘 ≔ H (𝜶 , 𝜷 ;𝑥) .
Checking if ℎ(𝑥) has good reduction at 𝑝 can be done using the

algorithm of Subsection 2.2: we compute val𝑝,0 (ℎ(𝑥)) and look

whether it is negative or not. However, describing explicitly the set

Pℎ of all primes 𝑝 at which ℎ(𝑥) has good reduction looks more

challenging. The aim of this subsection is to answer this question.

Let 𝑑 be the smallest common divisors of the parameters in 𝜶
and 𝜷 . Since 𝑑 has of course only finitely many prime divisors, it

is easy to treat them separately. Hence, in what follows, we shall

always assume that 𝑝 does not divide 𝑑 .

When𝑚 > 𝑛, we deduce from Theorem 2.2 that val𝑝 (ℎ𝑘 ) goes
to −∞ when 𝑘 grows. Hence ℎ(𝑥) cannot have good reduction in

this case. From now on, we then assume that𝑚 ≤ 𝑛.
If 𝑥 is a real number, we denote by {𝑥} its decimal part, that is,

by definition, the unique real number in [0, 1) such that 𝑥 −{𝑥} ∈ Z.
We will need the following result, which is a slight reformulation

of [12, Lemma 4].

Lemma 3.1 (Christol). Let 𝛾 = 𝑎
𝑑

∈ Q. Let 𝑞 > |𝑎−𝑑 | be an
integer which is coprime with 𝑑 and let Δ be the unique integer in
{1, . . . , 𝑑−1} such that Δ𝑞 ≡ 1 (mod 𝑑).

Then the reduction of 1−𝛾 modulo 𝑞 is (1−𝛾) + 𝑞·{𝛾Δ}.

Writing den(𝑥,𝑦) for the smallest common denominator of 𝑥

and 𝑦, we set

𝐵(𝜶 , 𝜷) ≔ max

𝛾,𝛾 ′∈Γ
den(𝛾,𝛾 ′)·|𝛾−𝛾 ′ |

where we recall that Γ = {1, 𝛼1, . . . , 𝛼𝑛, 𝛽1, . . . , 𝛽𝑚}. Theorem 3.1

implies that, for 𝑝 > 𝐵(𝜶 , 𝜷) and 𝑟 ≥ 1, the ordering of the

1−𝛾 mod 𝑝𝑟 , for𝛾 ∈ Γ only depends on the congruence of 𝑝 modulo

a common denominator 𝑑 of the 𝛼𝑖 and 𝛽 𝑗 .

Case 𝑚 = 𝑛. Here, in virtue of what we did previously, the

vector 𝝁
1
and the matrices 𝑇𝑟 of Subsection 2.2 only depend on

𝑝 mod 𝑑 provided that 𝑝 > 𝐵(𝜶 , 𝜷). This is then also the case for

val𝑝,0 (ℎ(𝑥)) and, consequently, for the fact that ℎ(𝑥) has or has
not good reduction modulo 𝑝 . In other words, Pℎ is the union of

exceptional primes up to the bound 𝐵(𝜶 , 𝜷) and then, it consists of
primes in arithmetic progressions of ratio 𝑑 .

These observations also readily give an algorithm to compute Pℎ :
we check whetherℎ(𝑥) has good or bad reduction for all primes 𝑝 ≤
𝐵(𝜶 , 𝜷) and for one representative of each invertible class modulo

𝑑 . We mention nonetheless that checking congruence classes can be

done more efficiently by using the criterion of [10, Theorem 3.1.3].

Case 𝑚 < 𝑛. In this case, the matrix 𝝁
1
is again independent

from 𝑝 as soon as 𝑝 > 𝐵(𝜶 , 𝜷). However, the matrices 𝑇𝑟 are not.

Following their construction, we nonetheless realize that they can

be written as

𝑇𝑟 =𝑈𝑟 + 𝑝𝑟−1−1
𝑝−1 ·𝑉𝑟

where 𝑈𝑟 and 𝑉𝑟 are independent from 𝑝 for 𝑝 > 𝐵(𝜶 , 𝜷). Besides
𝑈𝑟 ≥ −𝑚 (in the sense that all its entries are at least −𝑚) and

𝑉𝑟 ≥ 0. In particular𝑇2 does not depend on 𝑝 as well and so neither

does 𝝁
2
= 𝝁

1
⊙ 𝑇2. Define 𝝁̃𝑟 ≔ 𝝁𝑟 ⊕

(
0, . . . , 0

)
. By induction

on 𝑟 , we prove that 𝝁𝑟 ≥ −𝑚𝑟 for all 𝑟 , which in turns implies
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𝑇𝑟 =

©­­­­­­­­­­­­­­­­«

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(3𝑝𝑟−1, 1)

(4𝑝𝑟−1, 2)

(4𝑝𝑟−1, 2)

(4𝑝𝑟−1, 2)

(3𝑝𝑟−1, 2)

(8𝑝𝑟−1, 1)

(7𝑝𝑟−1, 1)

(7𝑝𝑟−1, 1)

(7𝑝𝑟−1, 1)

ª®®®®®®®®®®®®®®®®¬

(𝑟 even) ; 𝑇𝑟 =

©­­­­­­­­­­­­­­­­«

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(4𝑝𝑟−1,−1)

(4𝑝𝑟−1,−1)

(4𝑝𝑟−1,−1)

(3𝑝𝑟−1,−1)

(7𝑝𝑟−1, 0)

(8𝑝𝑟−1, 1)

(8𝑝𝑟−1, 1)

(7𝑝𝑟−1, 1)

(7𝑝𝑟−1, 1)

ª®®®®®®®®®®®®®®®®¬

(𝑟 odd)

Figure 2: The matrices 𝑇𝑟 for the hypergeometric seriesH
( (

1

3
, 4
3

)
,
(
2

3

)
;𝑥

)
and 𝑝 = 11

that 𝝁̃𝑟 = 𝝁̃𝑟−1 ⊙ 𝑈𝑟 if 𝑝𝑟−1−1 > 𝑚𝑟 (𝑝−1). We conclude that 𝝁̃𝑟
only depends on 𝑟 mod 𝑑 provided that 𝑝 > 𝐵(𝜶 , 𝜷) as before and
𝑝𝑟−1−1 > 𝑚𝑟 (𝑝−1) for all 𝑟 ≥ 3. The latter condition is fulfilled as

soon as 𝑝 ≥ 2𝑚; indeed from 𝑝 ≥ 2𝑚, we derive 𝑝𝑖 ≥ 2𝑚 for all 𝑖

and then

𝑝𝑟−1−1
𝑝−1 = 1 + 𝑝 + · · · + 𝑝𝑟−2 ≥ 1 + 2𝑚(𝑟−2) > 𝑚𝑟 (𝑟 ≥ 3) .

We now recall that the first coordinate of 𝝁𝑟 tends to val𝑝,0 (ℎ(𝑥))
when 𝑟 goes to infinity. Therefore, the limit of the first coordinate

of 𝝁̃𝑟 is val𝑝,0 (ℎ(𝑥)) ⊕ 0 =min

(
val𝑝,0 (ℎ(𝑥)), 0

)
. The fact that ℎ(𝑥)

has good reduction at 𝑝 can then be read off on the 𝝁̃𝑟 , and thus

only depend on the congruence class of 𝑝 modulo 𝑑 provided that

𝑝 > max(𝐵(𝜶 , 𝜷), 2𝑚).
As a consequence, one can compute the set P𝑓 by proceeding as

in the case𝑚 = 𝑛, except that the bound 𝐵(𝜶 , 𝜷) needs now to be

replaced by max(𝐵(𝜶 , 𝜷), 2𝑚).

3.2 Section operators
From now on, we fix a prime number 𝑝 of good reduction for ℎ(𝑥)
and aim at studying the algebraic properties of ℎ(𝑥) mod 𝑝 .

We let 𝑛′ (resp.𝑚′
) be the number of top (resp. bottom) parame-

ters which are in Z(𝑝 ) and let 𝑣 ′ (resp.𝑤 ′
) be the sum of the valua-

tions of the top (resp. bottom) parameters which are not in Z(𝑝 ) . Fol-

lowingwhat we did in Subsection 2.2, we define 𝜈0 ≔ 𝑤 ′−𝑣 ′+𝑚′−𝑛′
𝑝−1 .

From Proposition 2.2, we derive that lim𝑘→∞ val𝑝 (ℎ𝑘 )/𝑘 = −𝜈0.
Hence, our good reduction assumption ensures that 𝜈0 ≤ 0. We also

set 𝜈 ≔ (1 − 𝑝)𝜈0 = (𝑝 − 1) (𝑤 ′ − 𝑣 ′) + (𝑚′ − 𝑛′) ∈ N.
Key tools for studying ℎ(𝑥) mod 𝑝 are the section operators that

we introduce now.

Definition 3.2. Let 𝑟 be a nonnegative integer. The map

Λ𝑟 : Z(𝑝 ) [[𝑥]] → Z(𝑝 ) [[𝑥]]∑∞
𝑘=0

𝑎𝑘𝑥
𝑘 ↦→ ∑∞

𝑘=0
𝑎𝑘𝑝+𝑟𝑥

𝑘

is called the 𝑟 -th section operator.

We are going to prove that the 𝑟 -th section of a hypergeometric

series is closely related to a scalar multiple of another hypergeomet-

ric series. Before proceeding, we need the two following definitions.

Definition 3.3. For 𝑎, 𝑏 ∈ Q, we say that 𝑎 is multiplicatively
congruent to 𝑏 modulo 𝑝 and we write 𝑎 ≡× 𝑏 (mod 𝑝) if 𝑎 = 𝑏 = 0,

or 𝑏 ≠ 0 and
𝑎
𝑏
∈ 1 + 𝑝Z(𝑝 ) .

Similarly, if 𝑓 (𝑥) =
∑
𝑘 𝑎𝑘𝑥

𝑘
and 𝑔(𝑥) =

∑
𝑘 𝑏𝑘𝑥

𝑘
are two series

with coefficients in Q, we write 𝑓 ≡× 𝑔 (mod 𝑝) if 𝑎𝑘 ≡× 𝑏𝑘
(mod 𝑝) for all 𝑘 .

Definition 3.4 (Dwork map). We define the map𝔇𝑝 : Q → Q by:

• when 𝛾 ∈ Z(𝑝 ) ,𝔇𝑝 (𝛾) is the unique element of Z(𝑝 ) such that

𝑝𝔇𝑝 (𝛾) − 𝛾 ∈ {0, . . . , 𝑝−1},
• when 𝛾 ∉ Z(𝑝 ) ,𝔇𝑝 (𝛾) := 𝛾 .

Proposition 3.5. For 𝑟 ≥ 0, we have

Λ𝑟 (ℎ(𝑥)) ≡× ℎ𝑟 · H
(
𝔇𝑝 (𝜶+𝑟 ),𝔇𝑝 (𝜷+𝑟 ); (−𝑝)𝜈𝑥

)
(mod 𝑝).

Proof. A direct computation gives

ℎ𝑟 · H (𝜶+𝑟, 𝜷+𝑟 ;𝑥) = ∑
𝑘≥0 ℎ𝑘+𝑟𝑥

𝑘 .

Therefore, we can assume without loss of generality that 𝑟 = 0.

Let 𝛾 ∈ Z(𝑝 ) . Among 𝛾,𝛾+1, . . . , 𝛾+𝑝−1, one finds all congruence
classes modulo 𝑝 . Besides, the unique 𝛾 + 𝑎 (for 0 ≤ 𝑎 < 𝑝) which

lies in 𝑝Z(𝑝 ) is 𝑝𝔇𝑝 (𝛾) by definition of the Dwork map. Thus we

get the multiplicative congruence

(𝛾)𝑝 = 𝛾 (𝛾+1) · · · (𝛾+𝑝−1) ≡× (𝑝−1)! · 𝑝𝔇𝑝 (𝛾) (mod 𝑝).

Hence (𝛾)𝑝 ≡× −𝑝𝔇𝑝 (𝛾) (mod 𝑝) usingWilson’s theorem. Repeat-

ing the argument 𝑘 times and using𝔇𝑝 (𝛾 +𝑝) =𝔇𝑝 (𝛾) + 1, we end

up with

(𝛾)𝑝𝑘 ≡× (−𝑝)𝑘 · (𝔇𝑝 (𝛾))𝑘 (mod 𝑝) .
If now 𝛾 ∉ Z(𝑝 ) , we find instead, using Fermat’s theorem,

(𝛾)𝑝𝑘 ≡× 𝛾
𝑝𝑘 ≡× 𝑝

𝑘 (𝑝−1)val𝑝 (𝛾 ) · 𝛾𝑘

≡× (−𝑝)𝑘 (𝑝−1)val𝑝 (𝛾 ) · (𝔇𝑝 (𝛾))𝑘 (mod 𝑝).

For the last congruence, we used (−1)𝑝−1 ≡ 1 (mod 𝑝).
Putting now all together, we obtain

ℎ𝑝𝑘 ≡× (−𝑝)𝑘𝜈 ·
(𝔇𝑝 (𝛼1))𝑘 · · · (𝔇𝑝 (𝛼𝑛))𝑘
(𝔇𝑝 (𝛽1))𝑘 · · · (𝔇𝑝 (𝛽𝑚))𝑘

(mod 𝑝)

which gives the desired multiplicative congruence. □

Remark 3.6. Theorem 3.5 yields an algorithm with complex-

ity 𝑂
(
(𝑚+𝑛)𝑝 log𝑁

)
for computing the multiplicative congruence

class modulo 𝑝 of ℎ𝑁 . Indeed, if 𝑁 = 𝑝𝑁1 + 𝑟0 is the Euclidean

division of 𝑁 by 𝑝 , we have ℎ𝑁 ≡× ℎ𝑟0ℎ
(1)
𝑁1

(mod 𝑝) where

ℎ (1) (𝑥) = ∑
𝑘≥0 ℎ

(1)
𝑘
𝑥𝑘 ≔ H

(
𝔇𝑝 (𝜶+𝑟 ),𝔇𝑝 (𝜷+𝑟 ); (−𝑝)𝜈𝑥

)
.
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Repeating this argument again and again, we finally end up with a

multiplicative congruence of the form

ℎ𝑁 ≡× ℎ𝑟0ℎ
(1)
𝑟1 ℎ

(2)
𝑟2 · · ·ℎ (ℓ )𝑟ℓ (mod 𝑝)

where ℓ is the number of digits of 𝑁 in base 𝑝 , hence ℓ ∈ 𝑂 (log𝑁 ).
Since moreover 𝑟𝑖 < 𝑝 for all 𝑖 , each term ℎ

(𝑖 )
𝑟𝑖 can be computed for

a cost of 𝑂
(
(𝑚+𝑛)𝑝

)
multiplications and divisions.

Theorem 3.5 can be rephrased by means of classical congruences

as follows.

Corollary 3.7. Let 𝑟 be a nonnegative integer. Set

𝑔(𝑥) = ∑
𝑘≥0 𝑔𝑘𝑥

𝑘 ≔ H
(
𝔇𝑝 (𝜶+𝑟 ),𝔇𝑝 (𝜷+𝑟 );𝑥

)
.

Then val𝑝 (ℎ𝑟 ) + val𝜈 (𝑔(𝑥)) ≥ 0 and

• if val𝑝 (ℎ𝑟 ) + val𝜈 (𝑔(𝑥)) > 0, then Λ𝑟 (ℎ(𝑥)) ≡ 0 (mod 𝑝),
• if val𝑝 (ℎ𝑟 ) + val𝜈 (𝑔(𝑥)) = 0, then

Λ𝑟 (ℎ(𝑥))
≡ ℎ𝑟+𝑝𝑠𝑥𝑠 · H

(
𝔇𝑝 (𝜶+𝑟 )+𝑠,𝔇𝑝 (𝜷+𝑟 )+𝑠 ; (−𝑝)𝜈𝑥

)
(mod 𝑝)

where 𝑠 is the smallest integer such that val𝑝 (𝑔𝑠 ) + 𝜈𝑠 = val𝜈 (𝑔(𝑥)).

We emphasize that Corollary 3.7 is effective in the sense that

val𝜈 (𝑔(𝑥)) and 𝑠 can both be computed using the algorithm of

Subsection 2.2 (see also Theorem 2.6).

3.3 Algebraicity modulo 𝑝
Writing ℎ(𝑥) ≡ ∑𝑝−1

𝑟=0
𝑥𝑟 ·Λ𝑟 (ℎ(𝑥))𝑝 (mod 𝑝), we derive from The-

orem 3.7 that ℎ(𝑥) mod 𝑝 can be written as a linear combination

over F𝑝 [𝑥] of 𝑝-th powers of other hypergeometric series. We call

this identity the Dwork relation associated to ℎ(𝑥). Our aim in this

subsection is to derive from Dwork relations an algebraic relation

involving uniquely ℎ(𝑥) mod 𝑝 .

When 𝜈0 < 0, the series ℎ(𝑥) mod 𝑝 is a polynomial, and alge-

braicity is clear. From now on, we then assume that 𝜈0 = 0; hence

𝜈 = 0 as well.

The main ingredient of our proof is the fact that iterating Dwork

relations, we only encounter a finite number of auxiliary hypergeo-

metric series. To establish this, we define 𝑋 as the smallest subset

of Q𝑛 × Q𝑚 containing (𝜶 , 𝜷) and stable by the operations

(𝜶 ′, 𝜷 ′) ↦→
(
𝔇𝑝 (𝜶 ′+𝑟 ),𝔇𝑝 (𝜷 ′+𝑟 )

)
(0 ≤ 𝑟 < 𝑝) .

Using that 𝔇𝑝 (𝛾) =
𝛾

𝑝
+ 𝑂 (1) for 𝛾 ∈ Z(𝑝 ) , we deduce that 𝑋 is

finite (see also [10, Lemma 3.2.1 (2)]). Let (𝜶 ′, 𝜷 ′) ∈ 𝑋 and write

𝑔(𝑥) = ∑
𝑘≥0 𝑔𝑘𝑥

𝑘 ≔ H (𝜶 ′, 𝜷 ′
;𝑥) .

If val𝑝,0 (𝑔(𝑥)) > −∞, we let 𝑡 denote the smallest integer for

which val𝑝 (𝑔𝑡 ) = val𝑝,0 (𝑔(𝑥)) and consider the new parameters

(𝜶 ′+𝑡, 𝜷 ′+𝑡). We let 𝑌 denote the set of all parameters obtained

this way by letting (𝜶 ′, 𝜷 ′) vary in 𝑋 . Clearly, 𝑌 is finite as well.

Proposition 3.8. For any nonnegative integer 𝑒 , there exists a
relation of the form

ℎ(𝑥) ≡ 𝑃 (𝑥) +
∑︁
𝜸 ∈𝑌

𝑄𝜸 (𝑥) · H
(
𝜸 ;𝑥

)𝑝𝑒 (mod 𝑝)

where 𝑃 (𝑥) and 𝑄𝜸 (𝑥) are polynomials in F𝑝 [𝑥].

Proof. Let𝜸 ∈ 𝑌 . Then𝜸 = (𝜶 ′+𝑠, 𝜷 ′+𝑠) for some (𝜶 ′, 𝜷 ′) ∈ 𝑋
and 𝑠 ∈ N. The Dwork relation makes H

(
𝜸 ;𝑥

)
mod 𝑝 appear as a

F𝑝 [𝑥]-linear combination of the series

H
(
𝔇𝑝 (𝜶 ′+𝑠+𝑟 ) + 𝑠𝑟 ,𝔇𝑝 (𝜷 ′+𝑠+𝑟 ) + 𝑠𝑟 ;𝑥

)𝑝
mod 𝑝 (0 ≤ 𝑟 < 𝑝)

for some 𝑠𝑟 ∈ N. We observe that, if 𝑠+𝑟 = 𝑎𝑝 + 𝑏 is the Euclidean

division of 𝑠+𝑟 by 𝑝 , we have 𝔇𝑝 (𝛾+𝑠+𝑟 ) = 𝔇𝑝 (𝛾+𝑏) + 𝑎 for all

𝛾 ∈ Z(𝑝 ) . Moreover, when 𝛾 ∉ Z(𝑝 ) , shifting 𝛾 by any integer

does not change the hypergeometric series modulo 𝑝 . Therefore,

H
(
𝜸 ;𝑥

)
mod 𝑝 is also in the F𝑝 [𝑥]-linear span of the

H
(
𝔇𝑝 (𝜶 ′+𝑏) + 𝑡𝑏 ,𝔇𝑝 (𝜷 ′+𝑏) + 𝑡𝑏 ;𝑥

)𝑝
mod 𝑝 (0 ≤ 𝑏 < 𝑝)

for some 𝑡𝑏 ∈ N. Moreover, for each fixed 𝑏 ∈ {0, . . . , 𝑝−1}, the
pair (𝜶 ′′, 𝜷 ′′) ≔ (𝔇𝑝 (𝜶 ′+𝑏),𝔇𝑝 (𝜷 ′+𝑏)) is by definition in 𝑋 . Let

𝑔(𝑥) =
∑
𝑘 𝑔𝑘𝑥

𝑘
be the associated hypergeometric series and let

𝑡 be the smallest integer such that val𝑝 (𝑔𝑡 ) = val𝑝,0 (𝑔(𝑥)) which
H (𝜶 ′′+𝑡, 𝜷 ′′+𝑡 ;𝑥) has good reduction modulo 𝑝 . Thus 𝑡𝑏 ≥ 𝑡 and
there exists 𝑐𝑏 ∈ F𝑝 , 𝐶𝑏 (𝑥) ∈ F𝑝 [𝑥] such that

H (𝜶 ′′+𝑡𝑏 , 𝜷 ′′+𝑡𝑏 ;𝑥)
≡ 𝐶𝑏 (𝑥) + 𝑐𝑏𝑥𝑡𝑏−𝑡H (𝜶 ′′+𝑡, 𝜷 ′′+𝑡 ;𝑥) (mod 𝑝).

It follows thatH
(
𝜸 ;𝑥

)
mod 𝑝 is in the F𝑝 [𝑥]-linear span of 1 and

the hypergeometric seriesH
(
𝜸 ′
;𝑥

)𝑝
mod 𝑝 for 𝜸 ′

varying in 𝑌 .

The proposition follows by induction on 𝑒 . □

Theorem 3.9. The series ℎ(𝑥) mod 𝑝 is algebraic over F𝑝 (𝑥).

Proof. Set𝑁 ≔ Card(𝑌 )+1. Raising the relation of Theorem 3.8

to the power 𝑝𝑁−𝑒
, we obtain

ℎ(𝑥)𝑝𝑁 −𝑒 ≡ ∑
𝜸 ∈𝑌 • 𝑄𝜸 (𝑥)𝑝

𝑁 −𝑒 · H
(
𝜸 ;𝑥

)𝑝𝑁 (mod 𝑝)
where we have set 𝑌 • = 𝑌 ⊔ {•} and 𝑄• (𝑥) = 𝑃 (𝑥), H (•;𝑥) =

1. These equalities give a linear system, yielding a single matrix

relation of the form(
ℎ(𝑥)𝑝𝑒

)
0≤𝑒≤𝑁

≡
(
H

(
𝜸 ;𝑥

)𝑝𝑁 )
𝜸 ∈𝑌 •

·𝑀 (𝑥) (mod 𝑝)

where 𝑀 (𝑥) is a matrix over F𝑝 [𝑥] with rows indexed by 𝑌 •
and

columns indexed by {0, . . . , 𝑁 }. Hence 𝑀 (𝑥) has more columns

than rows, and so it has a nontrivial vector (𝑣0 (𝑥), . . . , 𝑣𝑁 (𝑥)) in its

right kernel. Thus 𝑣0 (𝑥)ℎ(𝑥) +𝑣1 (𝑥)ℎ(𝑥)𝑝 + · · ·+𝑣𝑁 (𝑥)ℎ(𝑥)𝑝
𝑁
= 0,

proving algebraicity. □

Again, we underline that the proofs of Theorem 3.8 and Theo-

rem 3.9 readily yield an algorithm for computing an annihilating

polynomial of ℎ(𝑥) mod 𝑝 . Its complexity is polynomial when we

count operations in F𝑝 [𝑥] but the size of the polynomials can grow

very rapidly, due to frequent raisings to the 𝑝-th power. We believe

nonetheless that this blow up is intrinsic to the problem in the sense

that a general hypergeometric series ℎ(𝑥) mod 𝑝 has only huge an-

nihilating polynomials with coefficients having degree growing

exponentially fast with respect to 𝑝 .
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