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Abstract

The aim of this paper is to investigate the algebraicity behavior of reductions of D-
finite power series modulo prime numbers. For many classes of D-finite functions, such as
diagonals of multivariate algebraic series or hypergeometric functions, it is known that their
reductions modulo prime numbers, when defined, are algebraic. We formulate a conjecture
that uniformizes the Galois groups of these reductions across different prime numbers.

We then focus on hypergeometric functions, which serves as a test case for our conjecture.
Refining the construction of an annihilating polynomial for the reduction of a hypergeometric
function modulo a prime number p, we extract information on the respective Galois groups
and show that they behave nicely as p varies.
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1 Introduction

The starting point of this paper is the observation that there exist many interesting series in
Q[[x]] which are transcendental over Q(x) but whose reductions modulo p (when they exist) are
algebraic over Fp(x) for a large set of primes p. A typical example is provided by “diagonals”.
By definition, the diagonal of a multivariate series

f(t1, . . . , tk) =
∑

n1,...,nk∈N
an1,...,nk

tn1
1 · · · tnk

k

is the univariate series
∆f(x) =

∑
n∈N

an,...,nx
n.
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In characteristic zero, the diagonal construction usually does not preserve algebraicity. However
this astonishing property does hold in positive characteristic: the diagonal of an algebraic function
over Fp(t1, . . . , tk) is algebraic over Fp(x)! This result was originally observed and proved by
Furstenberg [Fur67] when f is a rational function; it was then extended by Deligne [Del84] to
algebraic functions and reproved many times by different authors [Sal86; Sal87; DL87; Har88;
SW88] throughout the years. Deligne’s theorem shows that the diagonals exhibit the phenomenon
we are interested in in this article: the diagonal ∆f(x) of an algebraic function f(t1, . . . , tk) ∈
Q[[t1, . . . , tk]] is usually transcendental but its reductions modulo the primes, when they are
defined, are algebraic (since they agree with the diagonals of f mod p).

The community then got interesting in finding upper bounds on the degree of algebraicity of
∆f(x) mod p. When f is a rational function, Furstenberg’s original proof leads to a bound of the
form pn where n depends only on f . It turns out that Deligne’s proof leads to a similar bound
when f(t1, t2) is a bivariate algebraic function. The general case was solved by Adamczewski
and Bell [AB13] who obtained again a general bound of the form pn where n only depends on f .
In [ABC23], after providing sharper bounds on the exponent n, the authors observed that, not
only ∆f(x) mod p is annihilated by a polynomial Zp(Y ) of degree at most pn, but that there
always exists such an annihilating polynomial of the form

Zp(Y ) = c0(x)Y + c1(x)Y
p + · · ·+ cn(x)Y

pn

(ci(x) ∈ Fp[x]). (1.1)

They noticed moreover (see Remark 5.3 of loc. cit.) that this property implies that all the Galois
conjugates of ∆f(x) mod p lie in a Fp(x)-vector space of dimension n, which further shows that
the Galois group of ∆f(x) mod p canonically embeds, up to conjugacy, into GLn(Fp). Going
even further, they suggested that all those Galois groups could have a common origin living in
characteristic zero.

In the present article, we explore this question in slightly different contexts. To start with, we
consider the class of D-finite functions. By definition the series f(x) ∈ Q[[x]] is called D-finite if
it is a solution of a linear differential equation of the form

f (r)(x) + ar−1(x)f
(r−1)(x) + · · ·+ a1(x)f

′(x) + a0(x)f(x) = 0 (1.2)

where the coefficients ai(x) are rational functions. It is a standard fact that diagonals are D-finite
but it turns out that the class of D-finite series is much larger; for instance, it includes the
function f(x) = exp(arctan(x)) whose reduction modulo p only makes sense for primes p which
are congruent to 1 modulo 4 (whereas diagonals can always be reduced modulo p for almost all
primes p).

In Section 2, we formulate several hypothesis predicting the behavior of the Galois groups
of f(x) mod p when f(x) is D-finite. Roughly speaking, if n denotes the minimal order of a
differential equation satisfied by f(x), what we expect is the existence of a number field K and
a finite family G1, . . . , Gt of subgroups of GLn(K) with the following property: for any prime
p of K for which f(x) mod p is well defined and algebraic over Fp(x), there exists an integer
i ∈ {1, . . . , t} such that

Gal
(
f(x) mod p | F̄p(x)

)
≃ image

(
Gi ∩GLn(O(p)) → GLn(kp)

)
.

Here O(p) denotes the localization of the ring of integer of K at p, that is the ring consisting of
fractions of the form a

b with b ̸∈ p, and kp is the residue field. We refer to Conjecture 2.2.6 in the
body of the text for a more precise statement.

We then elaborate further on this conjecture, trying to predict what could be the field K,
the groups Gi, and the dependence of the index i with respect to p. This leads us to formulate
stronger forms (see Conjectures 2.2.8 and 2.2.11) which, despite being technical, capture all what
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we have glimpsed at so far. Finally, in Subsection 2.3.5, we investigate a possible relationship
between the groups Gi and the differential Galois group of the differential equation (1.2).

In Section 3, we provide evidence towards our conjectures by studying in more details the
special case of hypergeometric functions. We recall that, given two tuples α = (α1, . . . , αn)
and β = (β1, . . . , βm) of rational numbers which are not nonpositive integers, the corresponding
hypergeometric function is

nFm (α,β;x) :=

∞∑
k=0

(α1)k(α2)k · · · (αn)k
(β1)k(β2)k · · · (βm)k

· x
k

k!

where (α)k := α · (α + 1) · · · (α + k − 1) is the Pochhammer symbol. It is a standard fact
that hypergeometric functions are D-finite (but not necessarily diagonals). In Subsection 3.1,
refining a former result of Christol, we classify the primes p for which the series nFn−1 (α,β;x)
reduces properly modulo p. In Subsection 3.2, we move to the main interest of this article
and, following the strategy introduced in [Var24], we exhibit an annihilating polynomial for the
function nFn−1 (α,β;x) mod p (when it is defined) and study the corresponding Galois group.
More precisely, we prove the following theorem.

Theorem 1.1. Let n be a positive integer. Let α = (α1, . . . , αn) and β = (β1, . . . , βn−1) be tuples
of rational numbers with αi, βj ̸∈ −N for all i, j. Let d be the smallest common denominator of
the αi and βi and let Q(ζd) be the d-th cyclotomic extension of Q. Let K be the subextension of
Q(ζd) corresponding under Galois correspondence to the group

D :=
{
λ ∈ (Z/dZ)× : λ·α ≡ α (mod Z) and λ·β ≡ β (mod Z) as sets

}
⊆ (Z/dZ)× ≃ Gal

(
Q(ζd)/Q

)
.

Let p > 2d·max{|αi|+ 1, |βj |+ 1} be a prime number such that nFn−1 (α,β;x) ∈ Z(p)[[x]]. Then,
letting kp be the residue field of K at a place p above p and writing q := Card(kp), the function

nFn−1 (α,β;x) mod p is annihilated by a nonzero polynomial of the form

Zp(Y ) = c0(x)Y + c1(x)Y
q + · · ·+ cn(x)Y

qn with ci(x) ∈ kp(x).

In particular, the Galois group of nFn−1 (α,β;x) mod p over kp(x) embeds into GLn(kp).

We notice in particular the emergence of a number field K, which is perfectly in line with
our formulation of Conjecture 2.2.6. Moreover, we underline that the integer n appearing in
GLn(kp), say the embedding dimension, is truly the same as the integer n we started with,
which is also the order of the differential equation satisfied by nFn−1 (α,β;x). Again, this is in
perfect accordance with Conjecture 2.2.6. We mention nevertheless that, in this special case, the
embedding dimension can even be lowered and looks more closely related to the dimension of the
space of solutions of the hypergeometric equation in characteristic p.

Finally, in Subsection 3.3, we consider the special case of Gaussian hypergeometric func-

tions 2F1 (α, (1);x) with α = (α1, α2) ∈
(
Q \ (−N)

)2
. In this situation, two important facts

occur. Firstly, keeping the notation and assumptions of Theorem 1.1, the hypergeometric series

2F1 (α, (1);x) can be reduced modulo p for all prime p not dividing d. Secondly, the Galois
group of 2F1 (α, (1);x) mod p over kp(x) always embeds into GL1(kp) = k×p ; in particular, it is
commutative. The following theorem exhibits explicit subgroups of GL1(K) = K×, which are
serious candidates for uniformizing the above Galois groups when p varies.
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Theorem 1.2. We keep the notation and assumptions of Theorem 1.1 and assume moreover
that n = 2, α1, α2 ̸∈ Z and β1 = 1. We set K+ := K ∩ R, we let m be the denominator of an
irreducible fraction representing α1 + α2, and we define the subgroup G of GL1(K) by

G :=


GL1(K) if K = K+

GL1(K
+) · ⟨ξ − ξ̄⟩ if K ̸= K+ and m = 2

GL1(K
+) · ⟨1 + ζm⟩ if K ̸= K+ and m ̸= 2

where ξ is an element of K \K+, ξ̄ is its complex conjugate, ζm = exp(2iπ/m) is a primitive
m-th root of unity and the notation ⟨ · ⟩ stands for the generated subgroup.

Then, for any prime number p which does not divide d and any prime p of K above p, we have

Gal
(
2F1 (α, (1);x) mod p | kp(x)

)
⊆ image

(
G ∩GL1(O(p)) → GL1(kp)

)
,

where O(p) is the localization of the ring of integers of K at p.
Moreover, the above inclusion is an equality when d ∈ {2, 3, 4, 6, 8, 12, 24}.

We actually expect that the inclusion of Theorem 1.2 is (almost) always an equality but,
unfortunately, we were not able to prove it in full generality. If our expectation is correct, this
would say that the group G of Theorem 1.2 uniformizes the Galois groups of 2F1 (α, (1);x) mod p.
For this reason, it appears as a very important invariant attached to the hypergeometric function

2F1 (α, (1);x). Nonetheless, it remains quite mysterious to us: it looks like it is built from several
pieces of different nature but, so far, we do not have a clear understanding of where these parts
come from.

Notation. Throughout the article, we let Z, Q, R and C denote the set of integers, rational
numbers, real numbers and complex numbers respectively. We also write N for the set of
nonnegative integers, and we denote accordingly the set of nonpositive integers by −N. Besides,
we choose and fix once for all a square root of −1 in C, that we denote by the bold letter i.

If a is an element in a ring A and I is an ideal of A, we use the notation a mod I to denote
the image of a in the quotient of A/I. We will often abuse notation and simply write a mod d for
a mod dA when d is an element of A.

If g1, . . . , gn are some elements in a group G, we write ⟨g1, . . . , gn⟩ for the subgroup they
generate in G. In particular, if a and d are two coprime integers, the notation ⟨a mod d⟩ will
refer to the multiplicative subgroup of (Z/dZ)× generated by a.
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2 A general picture of what we expect

In this section, we consider the general class of D-finite series f(x) and aim at drawing a general
picture of the behavior of the Galois groups of f(x) mod p (when it is defined) when p varies. Let
us first recall from the introduction that a series f(x) ∈ Q[[x]] is D-finite (or differentiably finite)
if it is solution of a linear differential equation of the form

f (r)(x) + ar−1(x)f
(r−1)(x) + · · ·+ a1(x)f

′(x) + a0(x)f(x) = 0 (2.0.1)

with ai(x) ∈ Q(x) for all i. It is a standard fact that D-finiteness translates to a recurrence
relation on the coefficients of f(x). It is also well known that the class of D-finite series is closed
under sums and products; in other words, it forms a subring of Q[[x]] [Sta80].

On the Galois side, we introduce the following notation.

Definition 2.0.1. Let K be a field and let Ksep be a separable closure of K. For an element
a ∈ Ksep, we set Gal(a | K) := Gal(L/K) where L denotes the extension of K generated by a
and its Galois conjugates.

From now on, we fix a separable closure Fp(x)
sep of Fp(x). Since the extension Fp((x))/Fp(x) is

itself separable, any algebraic series f(x) ∈ Fp[[x]] is automatically separable over Fp(x) and thus
can be considered (noncanonically) as an element of Fp(x)

sep. It then makes sense to talk about
Gal

(
f(x) | Fp(x)

)
and we check that this Galois group does not depend, up to isomorphism, on

the choice of the representative of f(x) in Fp(x)
sep.

In what follows, if f(x) is a series with coefficients in Z(p) and f(x) mod p is algebraic, we

shall often slightly abuse notation and write Gal
(
f(x) | Fp(x)

)
for Gal

(
f(x) mod p | Fp(x)

)
.

2.1 Getting intuition by examples

In this introductory subsection, we present and discuss various examples, illustrating the most
important phenomena we have observed. For each example f(x), we will determine the primes p
for which f(x) mod p is well-defined and algebraic and compute (or at least estimate) the
corresponding Galois groups.

In the next subsections, we will rely on these results to elaborate our conjectures and justify
their statements.

2.1.1 f(x) = (1− x)a/d

We begin with a simple example, which is already algebraic over Q(x). Before proceeding, we
underline that the expansion

f(x) =

∞∑
k=0

(−1)k · a
d
·
(a
d
− 1
)
· · ·
(a
d
− k + 1

)
· x

k

k!

shows that f(x) is indeed in Q[[x]]. We also note that it is also D-finite1 since it is solution of the
differential equation d · (1 + x)f ′(x)− af(x) = 0.

As f(x) is itself algebraic over Q(x), we start by computing its Galois group over Q(x). For
this, assuming that a and d are coprime, we observe that the conjugates of f(x) are the functions
ζvdf(x) (0 ≤ v < d) where ζd is a primitive d-th root of unity, namely ζd = exp( 2iπd ) ∈ C. The
corresponding splitting field is Q(x)

(
ζd, f(x)

)
, which can be viewed as a Kummer extension on

top of a cyclotomic extension:

1In fact, it is a standard result that algebraic functions are always D-finite.
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Q(x)

Q(x)
(
ζd
)

Q(x)
(
ζd, f(x)

)

cyclotomic extension

Kummer extension

The Galois group of the cyclotomic extension is (Z/dZ)×, while that of the Kummer extension is
cyclic of order d, and hence isomorphic to Z/dZ. We deduce from this that

Gal
(
f(x) | Q(x)

)
≃ Z/dZ ⋊ (Z/dZ)×

where (Z/dZ)× acts on Z/dZ by multiplication. Concretely, the action of the Galois group on
Q(x)

(
ζd, f(x)

)
is given by ζd 7→ ζud , f(x) 7→ ζvdf(x) for u ∈ (Z/dZ)× and v ∈ Z/dZ.

The series f(x) can be properly reduced modulo p for any prime number p which does not
divides d. Assuming this, we can compute Gal

(
f(x) | Fp(x)

)
by applying the same strategy as in

characteristic zero. The only difference is that the Galois group of the cyclotomic part can now
be a strict subgroup of (Z/dZ)×. More precisely, it is the same as the Galois group of Fp(ξd)/Fp

where ξd is a primitive d-th root of unity in an algebraic closure of Fp. This Galois group being
generated by the Frobenius, we conclude that Gal

(
Fp(x)(ξd)/Fp(x)

)
is the subgroup of (Z/dZ)×

generated by p. Therefore, we finally find

Gal
(
f(x) | Fp(x)

)
≃ Z/dZ ⋊ ⟨p mod d⟩.

Altogether this shows that there are only finitely many possibilities for Gal
(
f(x) | Fp(x)

)
when p

varies. More precisely, this Galois group is entirely determined by the class of p modulo d.

2.1.2 f(x) = exp(arctanx)

In this example, the function f(x) is transcendental over Q(x) but still it is the solution of a
linear differential equation of order 1, given that

f ′(x)

f(x)
= arctan′(x) =

1

x2 + 1
. (2.1.1)

Using Dwork’s criterion [Rob00, p.409], one proves that f(x) ∈ Z(p)[[x]] if and only if p ≡ 1
(mod 4) (see also [BCR24, Example 3.34]). For those primes, it turns out that the differential
equation (2.1.1) can be solved over the p-adics.

Let Zp be the ring of p-adic integers and let i ∈ Zp be a square root of −1 (which exists because
p is congruent to 1 modulo 4). Over Zp(x), we have the following partial fraction decomposition:

1

x2 + 1
=

1

2
·
(

1

1 + ix
+

1

1− ix

)
.

Solving Equation (2.1.1) and taking care of the initial condition f(0) = 1, we obtain the following
closed formula for f(x):

f(x) = (1 + ix)
−i/2 · (1− ix)

i/2 ∈ Zp[[x]]. (2.1.2)
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Here the p-adic exponentiation is defined through its p-adic expansion; namely, for a ∈ Zp and a
formal expression u, we set

(1 + u)a :=

∞∑
k=0

a · (a− 1) · · · (a− k + 1)

k!
· uk.

We now write the p-adic expansions of the exponents −i/2 and i/2 as follows:

− i
2 = a0 + pa1 + p2a2 + · · · and i

2 = b0 + pb1 + p2b2 + · · ·

with ak, bk ∈ {0, 1, . . . , p−1}. Reducing Equation (2.1.2) modulo p then gives

f(x) mod p =

∞∏
k=0

(
1 + ixp

k)ak ·
(
1− ixp

k)bk ∈ Fp[[x]],

where i ≡ 2b0 (mod p).

Proposition 2.1.1. For all primes p congruent to 1 modulo 4, the function f(x) mod p is
transcendental over Fp(x).

Proof. For an integer u ∈ {0, . . . , p−1}, we define gu(x) := (1 + ix)u · (1 − ix)p−1−u and, for a
sequence u = (uk)k≥0, we set

gu(x) :=

∞∏
k=0

guk

(
xp

k)
=

∞∏
k=0

guk
(x)p

k

.

Noticing that a0 + b0 = p and ak + bk = p−1 as soon as k ≥ 1, we find f(x) = (1− ix) · ga(x) in
Fp[[x]] where a = (ak)k≥0. Hence it is enough to prove that ga(x) is transcendental.

For r ∈ {0, . . . , p−1}, we introduce the section operator

σr : Fp[[x]] → Fp[[x]],

∞∑
n=0

anx
n 7→

∞∑
n=0

apn+rx
n.

The action of σr on the series gu(x) is easily described. Indeed, remarking that σr(g(x)
ph(x)) =

g(x)σr(h(x)) for all series g(x) and h(x), we obtain the relation

σr
(
gu(x)

)
= σr

(
gu0

(x)
)
· gSu(x)

where Su is the shifted sequence defined by (Su)k = uk+1 for k ∈ N. We notice in addition
that the prefactor σr(gu0

(x)) is a scalar in Fp given that gu0
(x) is a polynomial of degree p−1.

Moreover, when r = 0, this scalar is 1 and we just have σ0(gu(x)) = gSu(x).
We now use the following characterization of algebraicity, known as Christol’s theorem [Chr79;

Chr+80]: a series g(x) ∈ Fp[[x]] is algebraic over Fp(x) if and only if there exists a finite set which
contains g(x) and is stable by the σr. In our case of interest, it is then enough to prove that the
series σk

0 (ga(x)) = gSka(x) are pairwise distinct.

Let ℓ > k be two nonnegative integers. We first notice that the sequences Ska and Sℓa cannot
be equal. Indeed, from their coincidence, we would deduce that a is ultimately periodic (with
period ℓ−k), which is not the case because i ̸∈ Q. We now fix an integer n such that restricting to
the n first terms is enough to distinguish between Ska and Sℓa. An easy computation shows that

gSka(x) ≡
1

1− ix
·
(
1 + ix

1− ix

)ak+pak+1+···+pn−1ak+n−1

(mod xp
n

)

gSℓa(x) ≡
1

1− ix
·
(
1 + ix

1− ix

)aℓ+paℓ+1+···+pn−1aℓ+n−1

(mod xp
n

)
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Thanks to our choice of n, the exponents appearing in the above expressions are distinct. Observing
moreover that the change of variables y = 1+ix

1−ix is invertible in Fp[[x]] (with inverse x = i·y−1
y+1 ),

we conclude that gSka(x) and gSℓa(x) are not congruent modulo xp
n

, and so that the are not
equal.

Remark 2.1.2. Examples 2.1.1 and 2.1.2 are representative of all what can happen with differential
equations of order 1. Indeed, let us consider a series f(x) which is solution of the equation
f ′(x) = a(x)f(x) for some a(x) ∈ Q(x). If a(x) exhibits a multiple pole (possibly at infinity),
then f(x) is transcendental and cannot be reduced modulo p for any prime p. Otherwise we have
the following dichotomy:

• (Case of Example 2.1.1) If the residues of a(x) all lie in Q, then f(x) is algebraic over Q(x).
In this case, f(x) can be reduced modulo almost all primes p and all those reductions are
algebraic with Galois groups closely related to the Galois group of f(x) over Q(x).

• (Case of Example 2.1.2) If one residue of a(x) is not in Q, then f(x) is transcendental over
Q(x). In this case, f(x) can be reduced modulo p if and only if a(x) mod p continues to
have only simple poles in P1(F̄p) and all the corresponding residues are in Fp. Moreover,
when this occurs, f(x) mod p is always transcendental.

2.1.3 f(x) =

∞∑
n=0

(
2n

n

)2
· xn

Before computing Galois groups, we briefly mention that the series f(x) is indeed D-finite as the
sequence of its coefficients obviously satisfies a recurrence relation with polynomial coefficients.
Concretely, f(x) is a solution of the differential equation

x(16x− 1)f ′′(x) + (32x− 1)f ′(x) + 4f(x) = 0. (2.1.3)

Apart from this, the function f(x) is also one of the simplest examples of a series exhibiting the
p-Lucas property, which will play a very important role throughout this paper. To explain what
it means, we pick a nonnegative integer n and write the Euclidean division of n by p as follows:
n = u+ pv. We then have the congruence

(1 + x)2n ≡ (1 + x)2u · (1 + xp)2v (mod p),

which, after extracting the coefficient of xn, leads to(
2n

n

)
≡
(
2u

u

)
·
(
2v

v

)
(mod p).

Raising this congruence to the square, we deduce that the coefficients an of f(x) satisfy the
congruence an ≡ auav (mod p) as well; we say that the series f(x) is p-Lucas.

The p-Lucas property has strong consequences on the Galois groups we are interested in.
Indeed, defining the truncation

Ap(x) =

p−1∑
n=0

anx
n ∈ Fp[x],

being p-Lucas translates to the algebraic relation

f(x) ≡ Ap(x) · f(x)p (mod p).
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In particular, f(x) mod p is algebraic and, even better, it appears as a (p−1)-th root of the
polynomial Ap(x). Since Fp contains all the (p−1)-th roots of unity, Kummer’s theory ensures
that Gal

(
f(x) | Fp(x)

)
embeds into µp−1(Fp) = F×

p and that equality holds as soon as Ap(x) is
a not a power (with exponent at least 2) of a rational function.

The following lemma will be used many times throughout the rest of the paper. It helps to
determine the multiplicity of certain polynomials tied to solutions of differential equations.

Lemma 2.1.3. Let g(x) ∈ Fp[[x]] be a power series, which satisfies a linear differential equation
with polynomials coefficients of order r < p. Let F̄p denote a fixed algebraic closure of Fp and let
ξ ∈ F̄p be an ordinary point of that differential equation. If g(x) = A(x)h(xp) for some polynomial
A(x) of degree less than p and some power series h(x) ∈ Fp[[x]], then valξ(A(x)) < r.

In particular, if g(x) is p-Lucas, then valξ(g(x) mod xp) < r.

Proof. From g(x) = A(x)h(xp), it is clear that A(x) is a solution of the same differential equation
as g(x). The local exponents of this equation at ξ are 0, 1, . . . , r − 1. Thus, valξ(A(x)) ∈
{0, 1, . . . , r − 1} mod p. Because deg(A(X)) < p, we conclude valξ(A(x)) ∈ {0, 1, . . . , r − 1}.

Back to our example of the generating function of the squares of the central binomial coefficients,
we can use Lemma 2.1.3 to obtain the following.

Corollary 2.1.4. If p > 2, the polynomial Ap(x) cannot be written as B(x)e with B(x) ∈ Fp(x)
and e > 1.

Proof. To start with, we observe that Ap(x) is a polynomial of degree exactly p−1
2 , because,

when p
2 ≤ n < p, the central binomial coefficient

(
2n
n

)
is divisible by p. Moreover, any element

ξ ∈ F̄p \
{
0, 1

16

}
is a regular point of the differential equation (2.1.3). By Lemma 2.1.3, we find

that ξ cannot be a double root of Ap(x). Clearly Ap(0) = 1, so 0 is also not a (double) root of

Ap(x). To conclude, it then remains to exclude the case Ap(x) = (1− 16x)
p−1
2 . This can be done

easily by looking at the coefficient of x: in Ap(x), it is equal to 4, while in the right hand side, it
is equal to −8(p− 1), which is 8 modulo p.

It follows from all what precedes that Gal
(
f(x) | Fp(x)

)
≃ F×

p for p > 2. The isomorphism is
actually also correct when p = 2 because f(x) mod p = 1 in this case.

2.1.4 f(x) =

∞∑
n=0

(
2n

n

)3
· xn

This example looks similar to the previous one (the only difference is that the exponent 2 has been
replaced by 3) but we will see that the behavior of the Galois groups exhibits a new interesting
phenomenon.

The function f(x) is still D-finite and is now a solution of a differential equation of order 3:

x2(64x− 1)f ′′′(x) + x(288x− 3)f ′′(x) + (208x− 1)f ′(x) + 8f(x) = 0.

Of course, f(x) is again p-Lucas, from which we get the algebraic relation

f(x) ≡ Ap(x) · f(x)p (mod p),

where Ap(x) is the truncation of f(x) defined by

Ap(x) =

p−1∑
n=0

(
2n

n

)3
· xn ∈ Fp[x].
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Again, this implies that Gal
(
f(x) | Fp(x)

)
embeds into F×

p but it might happen now that this
inclusion is strict.

Lemma 2.1.5. Let p be prime number with p ≡ 1 (mod 4). Then Ap(x) is a square in Fp[x].

Proof. We reinterpret the function f(x) as an hypergeometric series as follows:

f(x) = 3F2

((
1
2 ,

1
2 ,

1
2

)
, (1, 1); 64x

)
.

It then follows from Clausen’s formula [Cla28] that f(x) = g(x)2 with g(x) = 2F1

((
1
4 ,

1
4

)
, (1); 64x

)
.

We now let Bp(x) denote the truncation at xp of g(x) mod p, so that

Ap(x) ≡ Bp(x)
2 (mod xp). (2.1.4)

As in the proof of Corollary 2.1.4, we find that Ap(x) has degree p−1
2 . Similarly, using the

congruence p ≡ 1 (mod 4), we prove that degBp(x) =
p−1
4 . Hence the congruence (2.1.4) has to

be an equality in Fp[x], which proves the lemma.

By Lemma 2.1.3, we have that Ap(x) is not a e-th power for any e > 2. Moreover, when p ≡ 3
(mod 4), it is not a square either because it has odd degree. We conclude that

Gal
(
f(x) | Fp(x)

)
≃

{
(F×

p )
□ if p ≡ 3 (mod 4)

F×
p if p ≡ 1 (mod 4)

, (2.1.5)

where, when G is a commutative group, the notation G□ refers to its subgroup of squares.

2.1.5 f(x) =

∞∑
n=0

n∑
k=0

(
n+ k

k

)2(
n

k

)2
· xn and related functions

The series f(x) is the so-called Apéry series because the sequence of its coefficients appears as a
key ingredient in Apéry’s proof of the irrationality of ζ(3) [Apé79; Fis04]. It is solution of the
differential equation

x2(x2−34x+1)f ′′′(x)+3x(2x2−51x+1)f ′′(x)+(7x2−112x+1)f ′(x)+(x−5)f(x) = 0 (2.1.6)

and it turns out that the reductions of f(x) modulo the primes behave quite similarly to what
we described in the previous example. First of all, it is known that f(x) is p-Lucas [Ges82].
Therefore, once again, its reductions modulo p satisfy the algebraic relation

f(x) ≡ Ap(x) · f(x)p (mod p)

where Ap(x) is the truncation of f(x):

Ap(x) =

p−1∑
n=0

n∑
k=0

(
n+ k

k

)2(
n

k

)2
· xn ∈ Fp[x].

As a consequence the Galois group Gal
(
f(x) | Fp(x)

)
appears as a subgroup of F×

p . Moreover
since the order of the differential equation (2.1.6) is 3, Lemma 2.1.3 shows that Ap(x) cannot be
a e-th power with e > 2 (expect if it is a constant polynomial). However it still can be a square
and, as we will see in the sequel, this actually happens from time to time.

Computational experiments tend to imply that whether Ap(x) is a square or not is governed
by the class of congruence of p modulo 24. More precisely, we observed the following.
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Heuristic observation 2.1.6. There exists a polynomial Bp(x) ∈ Fp[x] such that

• Ap(x) = Bp(x)
2 if p ≡ 1, 5, 7, 11 (mod 24),

• Ap(x) = (x2 − 34x+ 1) ·Bp(x)
2 if p ≡ 13, 17, 19, 23 (mod 24).

We leave the above heuristic as an open question for the time being and explore its consequences.
First of all, at the level of Galois groups, it implies

Gal
(
f(x) | Fp(x)

)
≃

{
(F×

p )
□ if p ≡ 1, 5, 7, 11 (mod 24)

F×
p if p ≡ 13, 17, 19, 23 (mod 24)

given that the polynomial x2 − 34x+ 1 is not a square in Fp[x] as soon as p ≥ 5.
Going further, Heuristic 2.1.6 suggests to introduce the following functions:

g(x) =
√
f(x) and h(x) =

√
f(x)

x2 − 34x+ 1
.

Those can be expanded as series in the variable x, and so they are elements of Q[[x]]. Moreover, it
turns out that they are both D-finite, being solutions of the differential equations

4x(x2 − 34x+ 1)g′′(x) + 4(2x2 − 51x+ 1)g′(x) + (x− 10)g(x) = 0,

4x(x2 − 34x+ 1)h′′(x) + 4(4x2 − 85x+ 1)h′(x) + (9x− 78)h(x) = 0.

Of course, g(x) mod p and h(x) mod p are also algebraic and one can be interested in their Galois
groups. When Ap(x) = Bp(x)

2, we have

g(x) =
g(x)p√
f(x)p−1

≡ Bp(x) · g(x)p (mod p)

and similarly

h(x) ≡ (x2 − 34x+ 1)
p−1
2
Bp(x) · h(x)p (mod p).

In this case, we see that the series g(x) mod p and h(x) mod p satisfy algebraic relations of the
same shape and, using that Bp(x) is a not an e-th power for any e > 1 (because Ap(x) has no
ordinary points as roots of multiplicity 2e), we conclude that

Gal
(
g(x) | Fp(x)

)
≃ Gal

(
h(x) | Fp(x)

)
≃ F×

p .

On the contrary, when Ap(x) = (x2 − 34x+ 1) ·Bp(x)
2, we get the relations

g(x) ≡ (x2 − 34x+ 1)
p+1
2
Bp(x) · h(x)p (mod p) (2.1.7)

h(x) ≡ Bp(x) · g(x)p (mod p) (2.1.8)

which now intertwine the functions g(x) and h(x). Combining these equations, we deduce the
untangled algebraic relations

g(x) ≡ (x2 − 34x+ 1)
p+1
2
Bp(x)

p+1 · g(x)p
2

(mod p) (2.1.9)

h(x) ≡ (x2 − 34x+ 1)
p(p+1)

2
Bp(x)

p+1 · h(x)p
2

(mod p). (2.1.10)
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We observe that the coefficients of g(x)p
2

and of h(x)p
2

on the right hand sides of these equations
both are p+1

2 -th powers, but not higher ones. So, at the level of Galois groups, we obtain

Gal
(
g(x) | Fp(x)

)
≃ Gal

(
h(x) | Fp(x)

)
≃
√

F×
p ⋊ Z/2Z,

where by definition √
F×
p :=

{
x ∈ F×

p2 such that x2 ∈ F×
p

}
and where Z/2Z acts on it through the Frobenius.

Remark 2.1.7. In these examples, we observe that both of the Galois groups Gal
(
g(x) | Fp(x)

)
and

Gal
(
h(x) | Fp(x)

)
might be commutative for an infinitely many primes p and noncommutative

for another infinity of primes p at the same time (at least if we believe in Heuristic 2.1.6).

Remark 2.1.8. We thank Alin Bostan for pointing out to us that similar phenomena occur with
several other series of interest. Here are two examples:

• The generating series of Domb numbers [Dom60]

f(x) =

∞∑
n=0

n∑
k=0

(
2k

k

)(
2n− 2k

n− k

)(
n

k

)2
· xn.

In this case, computations suggest that the Galois group Gal
(
f(x) | Fp(x)

)
is F×

p when
p ≡ −1 (mod 6) and its subgroup of squares when p ≡ 1 (mod 6).

• The generating series of Almkvist–Zudilin numbers [Zag09; AZ06]

f(x) =

∞∑
n=0

n∑
k=0

(−1)n−k3n−3k (3k)!

k!3

(
n

3k

)(
n+ k

k

)
· xn.

In this case, our computations tend to imply that the Galois group Gal
(
f(x) | Fp(x)

)
is

F×
p when p ≡ 5, 7 (mod 8) and its subgroup of squares when p ≡ 1, 3 (mod 8).

These examples, together with the Apéry numbers, are appearing as sporadic examples of
differential equations having solutions with integral coefficients, studied for example in [Beu02;
Zag09; AVZ11]. Especially [AVZ11, Theorem 4.1] is reminiscent of our argument involving
Clausen’s formula in the proof of Lemma 2.1.5. It expresses the Apéry series (where the variable
is substituted by a rational function) as the square of another, explicitly determined, power series
times a polynomial, and could provide direction in the quest to prove our Observations 2.1.6.

2.1.6 f(x) = 3F2

((
1
9 ,

4
9 ,

5
9

)
,
(
1
3 , 1
)
;x
)

We conclude our tour by an example of a hypergeometric function, anticipating on the forthcoming
results of Section 3. Here, the series f(x) is a solution of the differential equation

729x2(x− 1)f ′′′(x) + 81x(37x− 21)f ′′(x) + 9(200x− 27)f ′(x) + 20f(x) = 0.

In Section 3 (see Example 3.2.14), we will show that f(x) can be reduced modulo any prime
p ̸= 3 and that the Galois group of f(x) mod p satisfy

Gal
(
f(x) | Fp(x)

)
⊂


GL2(Fp) if p ≡ 1 (mod 9)

F×
p6 ⋊ Z/6Z if p ≡ 2 or 5 (mod 9)

GL2(Fp3)⋊ Z/3Z if p ≡ 4 or 7 (mod 9)

F×
p2 ⋊ Z/2Z if p ≡ 8 (mod 9)

(2.1.11)
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where the element 1 ∈ Z/dZ (d ∈ {2, 3, 6}) always acts through the Frobenius on the left-hand
factor of the semi-direct product. We actually expect that all these inclusions are equalities but
were not able to prove it in full generality.

This example is novel in the sense that, for the first time, it goes beyond cyclic groups (or
simple semi-direct products of them) and involves groups of matrices of higher rank. We see
moreover that the latter does not show up in each case: for some classes of congruences, the
expected Galois group remains resoluble while it suddenly becomes more complicated for other
congruences classes.

2.2 The conjectures: weak and strong forms

The aim of this subsection is to formulate plausible conjectures describing the behavior of
Gal

(
f(x) | Fp(x)

)
when p varies.

2.2.1 Discarding too naive expectations

Since Gal
(
f(x) | Fp(x)

)
always appears as a subgroup of GLn(Fp) for some integer n (depending

possibly on p), the first naive question we may wonder about is the following: does there exist a
subgroup of GLn(Z) whose reduction modulo p agrees with Gal

(
f(x) | Fp(x)

)
for (almost) all

primes p? Unfortunately, the answer is negative, even if we replace Z by Z[ 1N ] for a positive
integer N . Indeed, Subsection 2.1.5 exhibits a situation where Gal(g(x) | Fp(x)) is commutative
for half of the primes and noncommutative for the other half; the next lemma shows that this
cannot occur for the reductions modulo p of a single subgroup of GLn

(
Z[ 1N ]

)
.

Lemma 2.2.1. Let G be a subgroup of GLn

(
Z[ 1N ]

)
for some positive integers n and N . We

assume that, for infinitely many primes p, the image of G in GLn(Fp) is commutative. Then G
is commutative.

Proof. We pick A,B ∈ G and form the commutator C = ABA−1B−1. For any prime p not
dividing N , the matrix C mod p is the commutator of A mod p and B mod p. Thanks to our
assumption, these commutators are trivial for infinitely many such primes p. Hence, denoting by
In the identity matrix, we get C ≡ In (mod p) for infinitely many primes p. Therefore C = In
and we conclude that A and B commute in G.

Remark 2.2.2. One may argue that the issue we just raised with the function g(x), defined as the
square root of the Apéry series in Example 2.1.5, can be easily fixed by considering Galois groups
over Fp2(x) instead of Fp(x): doing this, the factors Z/2Z disappear and all the Galois groups
Gal(g(x) | Fp2(x)) are commutative. This is indeed correct. However, Example 2.1.6 shows an
even worse situation where half of the groups are resoluble, while the other half of them are not;
in this case, the issue cannot be solved by changing the base field.

If one unique subgroup of GLn

(
Z[ 1N ]

)
is not enough to uniformize, one may now wonder if a

finite family of them could do the job. Unfortunately, this is again not the case: a counterexample
is given by Example 2.1.3, as shown by the next proposition.

Proposition 2.2.3. Let t, n, and N be positive integers and let G1, . . . , Gt be subgroups of
GLn

(
Z[ 1N ]

)
. Then, there exist infinitely many prime numbers p, not dividing N , for which none

of the groups G1 mod p, . . . , Gt mod p are cyclic of order p−1.

Proof. For i ∈ {1, . . . , t}, we let Pi denote the set of primes p, not dividing N , for which Gi

mod p is cyclic of order p−1. We also set P := P1 ∪ · · · ∪ Pt and denote by P ′ the complement of
P in the set of all primes. We have to show that P ′ is infinite.
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Without loss of generality, we may assume that each Pi is infinite. Indeed, when Pi is finite,
the lemma for the family (G1, . . . , Gi−1, Gi+1, . . . , Gt) implies the lemma for (G1, . . . , Gt).

We fix an index i. We claim that all matrices in Gi are semi-simple, i.e., diagonalizable over
an algebraic closure Q̄. Indeed, pick M ∈ Gi and a change-of-basis matrix A ∈ GLn(Q̄) such
that T := A−1MA is in Jordan form. We notice that A has all its entries in a certain number
field K. Besides, A and M can be reduced modulo p for almost prime number p. We assume by
contradiction that T has a nontrivial Jordan block of the form

T0 :=


λ 1

. . .
. . .

λ 1
λ

 .

For almost all primes p ∈ Pi, we have

T p−1
0 ≡


λp−1 −λp−2 ⋆ ⋆

. . .
. . . ⋆
λp−1 −λp−2

λp−1

 (mod p).

From the fact that Gi mod p is cyclic of order p−1, we deduce that λ must vanish modulo p.
Since this holds for infinitely many primes p, we finally obtain λ = 0, which is a contradiction.

On the other hand, we deduce from Lemma 2.2.1 that Gi is commutative. Consequently, all
matrices in Gi are simultaneously diagonalizable, i.e., there exists a matrix A ∈ GLn(Ki) (for a
certain number field Ki) such that A−1MA is diagonal for all M ∈ Gi. Up to enlarging N , we
may further assume that A ∈ GLn

(
OKi [

1
N ]
)
where OKi denotes the ring of integers of Ki. Let

Hi be the subgroup of OKi
[ 1N ]× generated by all the eigenvalues of all the matrices M ∈ Gi. By

Dirichlet’s theorem, we know that OKi
[ 1N ]× is of finite type. Hence Hi is also and we can choose

a finite set of generators Si of Hi.
We now uniformize this construction over i: we let K be the number field generated by all

the Ki and set S := S1 ∪ · · · ∪ St. By Chebotarev’s density theorem applied to the number field
L = K(

√
s, s ∈ S), there exist infinitely many primes p such that p splits in K and s mod p is a

square in Fp for all s ∈ S and all primes p of K above p. For those primes, all groups Gi reduce
modulo p to a subgroup of (F×

p )
□ and hence cannot have order p−1.

2.2.2 First formulation of the conjecture

The previous discussion leaves open the possibility that the Galois groups Gal
(
f(x) | Fp(x)

)
are

uniformized by a finite family (G1, . . . , Gt) of subgroups of GLn(Q) in the following sense: for
each prime p, there exists an index i such that

Gal
(
f(x) | Fp(x)

)
≃ image

(
Gi ∩GLn(Z(p)) → GLn(Fp)

)
,

where we recall that Z(p) denotes the localization of Z at p. At least, this formulation clearly
allows for catching F×

p = GL1(Fp) for all p, as we can simply take G = GL1(Q).
Although this expectation looks rather reasonable, many examples encountered in Subsec-

tion 2.1 involve the multiplicative group of some finite extension of Fp. It then sounds natural to
look for the groups Gi, not inside GLn(Q), but rather inside GLn(K) where K is a number field.

In a similar fashion, we observe that most of the Galois groups computed in Subsection 2.1 are
not exactly subgroups of some GLn but rather semi-direct products of groups of this type with

14



cyclic groups, the latter corresponding to an unramified initial extension of the form Fq(x)/Fp(x).
This phenomenon is actually a general fact about splitting fields of series in Fp[[x]] and can be
isolated.

Definition 2.2.4. The residual splitting field of an algebraic series f(x) ∈ Fp[[x]] is L∩ F̄p, where
L ⊆ Fp(x)

sep is the splitting field of f(x).

Lemma 2.2.5. Let f(x) ∈ Fp[[x]] be an algebraic series and let ℓ be its residual splitting field.
For any subfield k of F̄p, we have an exact sequence

1 −→ Gal
(
f(x) | k(x)

)
−→ Gal

(
f(x) | Fp(x)

)
−→ Gal

(
k ∩ ℓ/Fp

)
−→ 1. (2.2.1)

Proof. For a subfield k of F̄p, we let Sk ⊆ Fp(x)
sep be the splitting field of f(x) over k(x). By

definition, Gal(f(x) | k(x)) is then the Galois group of Sk over k(x). For convenience, we also set
S := SFp

.
We consider the field Fp(x)[f ]. It is a subfield of Fp((x)) and so it is linearly disjoint from k.

As a consequence, the minimal polynomial of f(x) over Fp(x) remains irreducible over k(x).
Therefore, all the Galois conjugates of f(x) over Fp(x) are also Galois conjugates over k(x). It
follows that Sk is the compositum of S and k(x), i.e., Sk = S · k(x) as subfields of Fp(x)

sep.
Noticing moreover that S ∩ k(x) = (k ∩ ℓ)(x), the exact sequence (2.2.1) follows from classical
Galois theory.

It follows from Lemma 2.2.5 that Gal(f(x) | k(x)) is independent of k as soon as k contains
the residual splitting field of f(x). This is the part of the Galois group we will be mostly interested
in and which is depicted by our conjecture.

Conjecture 2.2.6. Let f(x) ∈ Q[[x]] be a D-finite series and let n be the minimal order of a
differential operator that annihilates f(x).
Then, there exist a number field K and a family (G1, . . . , Gt) of subgroups of GLn(K) such that
the following holds: for almost all rational prime p for which f(x) mod p is well defined and
algebraic over Fp(x), and for any prime p of K above p, there exists an index i ∈ {1, . . . , t} such
that

(a) the residual splitting field of f(x) mod p is contained in kp, and

(b) there exists an (abstract) isomorphism of groups

Gal
(
f(x) | kp(x)

)
≃ image

(
Gi ∩GLn(O(p)) → GLn(kp)

)
,

where, in what precedes, O(p) denotes the localization of the ring of integers of K at p and kp is
the residue field of K at p.

We briefly comment Conjecture 2.2.6 on several important points.
First, we remark that the assertion (a) above indicates that the Galois group Gal(f(x) | kp(x))

has attained the limit, in the sense that it is equal to Gal(f(x) | k(x)) for any extension k of
kp sitting inside F̄p. We deduce from this observation that, if Conjecture 2.2.6 holds with the
number field K, then it holds as well for any finite extension K ′ of K with the same family of
groups (G1, . . . , Gt).

Second, we underline that the n in GLn(K), i.e., the size of matrices, is expected to be
controlled by the order of a differential operator L with L(f(x)) = 0. In fact, more is expected:
for a given prime p, we actually believe that Gal

(
f(x) | kp(x)

)
embeds into GLnp(kp) where np

is the Fp(x
p)-dimension of the space of solutions of L mod p (observe that np ≤ n). We will come
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back to these dimension bounds and give more evidences and arguments supporting them in
Subsection 2.3.

Finally, we mention that it is still unclear to us what could be the (minimal) number field
K in general, although we expect it to be somehow related to the differential Galois group (or
maybe the monodromy group) of the minimal differential equation satisfied by f(x). Again, we
will give more evidences supporting this hope in Subsection 2.3.

Back to the examples. We now come back to the examples of Subsection 2.1 and show that
Conjecture 2.2.6 perfectly fits with all of them.

In Example 2.1.1, the part of the Galois group that the conjecture is concerned with is the
factor Z/dZ, which is always present regardless of the choice of the prime p. Since this factor
corresponds to the Galois group over Fp(x)(ζd), the natural choice for the number field K is the
cyclotomic extension K = Q(ζd). For any prime p of K, we have Gal(f(x) | kp(x)) ≃ Z/dZ and
we can simply take t = 1 and G1 = µd(K) ⊆ GL1(K).

In Example 2.1.2, there is nothing to comment on, since f(x) mod p is never algebraic.
In Example 2.1.3, we can simply take t = 1 and G = Q× = GL1(Q).
In Example 2.1.4, one option is to take t = 2, as well as G1 = GL1(Q)□, and G2 = GL1(Q):

when p ≡ 1 (mod 4), we choose the index i = 1 whereas, when p ≡ 3 (mod 4), we choose i = 2
(and we choose either i = 1 or i = 2 when p = 2). It is however a nice observation that the Galois
groups can actually be uniformized by a unique subgroup G ⊆ GL1(Q), namely

G := GL1(Q)□ · {±1} ⊆ GL1(Q).

Indeed, one checks that G reduces modulo p to GL1(Fp)
□ · {±1} and, now, we remember that −1

is a square modulo p if and only if p = 2 or p ≡ 1 (mod 4).
The Apéry series f(x) of Example 2.1.5 is quite similar to what precedes: either, we can take

G1 = GL1(Q)□ and G2 = GL1(Q) or we can pick just one group which is

G := GL1(Q)□ · ⟨−6⟩ ⊆ GL1(Q).

Indeed, it follows from the law of quadratic reciprocity that −6 is a square modulo a prime
number p > 3 if and only if p ≡ 1, 5, 7, 11 (mod 24).

For the series g(x) and h(x), we observe that the relevant part of Gal(g(x) | Fp(x)) ≃
Gal(h(x) | Fp(x)) is, in some sense, the “square root” of Gal(f(x) | Fp(x)). This observation
leads us to consider the number field K = Q(i

√
6) together with the group

G := GL1(Q) ·
〈
i
√
6
〉
⊆ GL1(K).

When p is 1, 5, 7 or 11 modulo 24, there are two places p1 and p2 above p with residue field Fp.
Moreover, in this case, the reduction of i

√
6 in the residue field lies obviously in Fp, and so

image
(
G ∩GL1(O(pi)) → GL1(Fp)

)
= GL1(Fp) = F×

p .

On the contrary, when p ≡ 13, 17, 19, 23 (mod 24), there is only one place p above p with residue
field Fp2 and we find

image
(
G ∩GL1(O(p)) → GL1(Fp2)

)
=

√
F×
p ,

which is also the Galois group of g(x) (resp. h(x)) over Fp2(x).
In Example 2.1.6 finally, getting inspired by what precedes, we are looking for a number field

for which the splitting properties of a rational prime p depends on its congruence class modulo 9.
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A natural candidate is the cyclotomic extension K = Q(ζ9). Regarding the groups, one checks
that we can take

G1 := GL1(K) (works for p ≡ 2 (mod 3)),

G2 := GL2(K) (works for p ≡ 1 (mod 3)).

Remark 2.2.7. In the Conjecture 2.2.6 we consider prime numbers for which f(x) mod p is
well-defined and algebraic, without considering which prime numbers satisfy this condition. In
a refined version, Conjecture 2.2.11 we ask for some structure of this set of prime numbers.
Here, we mention one important case related to an old conjecture of Christol. A power series
f(x) ∈ Q[[x]] is said to be globally bounded, if there is a ∈ Z such that f(ax) − f(0) ∈ Z[[x]].
In particular, in that case f(x) can be reduced modulo almost all primes p, possibly with the
exceptions of the primes dividing a and the denominator of f(0). Christol’s conjecture [Chr86b]
states that every D-finite power series that is globally bounded, is the diagonal of a multivariate
rational function. By Fursteberg’s Theorem [Fur67], f(x) mod p then is algebraic for almost
all p. Christol’s conjecture is still wide open, for example, for the globally bounded function

3F2

([
1
9 ,

4
9 ,

5
9

]
,
[
1
3 , 1
]
;x
)
, discussed in Subsection 2.1.6, it is not known, whether it is a diagonal

[BY22, p.1085, footnote].

2.2.3 Two refinements

Although Conjecture 2.2.6 might look already rather strong and difficult, there are several points
on which it remains quite vague and unprecise. The first one is that it does not say too much
about the groups Gi, expect that they exist and are contained in some GLn. However, while
this fragility is certainly the most significant one, discussing it will require some categorical
language and machinery. For this reason, we prefer postponing this to Subsection 2.3 and start
by presenting, in this subsection, two other simpler improvements.

A Galois equivariant version. A first evident weakness of Conjecture 2.2.6 is that it does
not concern the complete Galois group Gal(f(x) | Fp(x)) but only a part of it, even if it is quite
large and arguably the most interesting one. This issue can be solved by adding descent data in
the formulation of the conjecture as follows. We require that K/Q is Galois and that each group
Gi ⊆ GLn(K) is stable by the Galois action. For a prime p of K, the group

Gi,p := image
(
Gi ∩GLn(O(p)) → GLn(kp)

)
(2.2.2)

which appears in Conjecture 2.2.6 is then stable by the natural action of Gal(kp/Fp); indeed this
action corresponds to that of the decomposition group at p which, by assumption, stabilizes Gi.
We can then form the semi-direct product Gi,p ⋊ Gal(kp/Fp) (where Gal(kp/Fp) acts on Gi,p

through its natural action on GLn(kp)), which looks like a very good candidate to be the complete
Galois group Gal(f(x) | Fp(x)). This expectation is actually a bit too naive because the factor
Gal(kp/Fp) may vary a lot with the choice of K. Instead, we propose the following formulation.

Conjecture 2.2.8. Let f(x) ∈ Q[[x]] be a D-finite series and let n be the minimal order of a
differential operator that annihilates f(x).
Then, there exist a Galois extension K/Q and a family (G1, . . . , Gt) of subgroups of GLn(K)
stable by the action of Gal(K/Q) such that the following holds: for almost all rational primes p
for which f(x) mod p is well defined and algebraic over Fp(x), and for any prime p of K above p,
there exists an index i ∈ {1, . . . , t} such that

(a) the residual splitting field of f(x) mod p is the field ℓp defined as the smallest subfield of kp
for which Gi,p ⊆ GLn(ℓp).
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(b) there is an isomorphism of exact sequences:

1 // Gal
(
f(x) | kp(x)

)
//

∼
��

Gal
(
f(x) | Fp(x)

)
//

∼��

Gal
(
ℓp/Fp

)
// 1

1 // Gi,p
// Gi,p ⋊Gal

(
ℓp/Fp

)
// Gal

(
ℓp/Fp

)
// 1

where Gi,p is defined by Equation (2.2.2) and the exact sequence on the top is that of
Lemma 2.2.5.

Remark 2.2.9. The point (b) above is equivalent to requiring, in addition of the assertion (b) of
Conjecture 2.2.6, that the exact sequence of Lemma 2.2.5 splits and that the induced action of
Gal(ℓp/Fp) on Gi,p agrees with its natural action on GLn(ℓp).

Remark 2.2.10. Another interesting feature of Conjecture 2.2.8 is that it clearly highlights that
all the places p above a fixed rational prime p play the same role (since they are permuted by
Gal(K/Q)).

Finally, we leave it as an exercise to the reader to check that all the examples of Subsection 2.1
satisfy Conjecture 2.2.8.

Controlling the partition of primes. The second point on which we would like to add
precisions to Conjecture 2.2.6 concerns the dependence of the index i, i.e., the subgroup Gi we
choose, with respect to p. On all the examples of Subsection 2.1, we observe that this dependence
is very easy to settle: the choice of i always only depends on the congruence class of p modulo
a certain fixed number. We would not expect however such a simple pattern to be repeated in
full generality. Our doubts come already from the case of linear differential equation of order 1,
namely

f ′(x) + a(x) · f(x) = 0.

More precisely, we have explained in Remark 2.1.2 that for a solution f(x) of the above equation,
the property to be reducible modulo p is governed by the factorization properties of a(x) mod p
which, in turn, can be read off from the decomposition of p in the splitting field L of a(x) over Q.
This behavior is indeed controlled by congruence conditions on p when L is an abelian extension
of Q; however it might be much more complicated in general.

For this reason, we prefer formulating our refined conjecture as follows.

Conjecture 2.2.11. Let f(x) ∈ Q[[x]] be a D-finite series. Let n be the minimal degree of a
differential operator that annihilates f(x). Then, there exist

• a number field K,

• a finite Galois extension L/Q,

• two subsets Calg ⊆ Cred of the set of conjugacy classes of Gal(L/Q) and

• for each C ∈ Calg, a subgroup GC ⊆ GLn(K)

such that, for almost all primes p, if C denotes the conjugacy class containing the Frobenius
morphism at p in Gal(L/Q), we have:

(1) C ∈ Cred if and only if f(x) ∈ Z(p)[[x]],

(2) C ∈ Calg if and only if f(x) ∈ Z(p)[[x]] and f(x) mod p is algebraic over Fp(x),
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(3) if C ∈ Calg, for any prime p in K above p, the residue field kp contains the residual splitting
field of f(x) mod p and there is an isomorphism

Gal
(
f(x) | kp(x)

)
≃ image

(
GC ∩GLn(O(p)) → GLn(kp)

)
.

We underline that Conjecture 2.2.11 also includes a criterion for recognizing whether f(x)
can be reduced modulo p and, when this is the case, whether the reduction is algebraic or not.
This part was not covered in the previous formulations.

On a different note, it is obvious that if Conjecture 2.2.11 holds with a number field L and it
holds for any extension L′ of L (with L′/Q Galois) as well. Since a similar property also holds
for the number field K, one can safely assume that K = L in Conjecture 2.2.11. However, it
looks important to us to make the distinction between K and L as they seem to play different
roles. For instance, in many examples considered in Subsection 2.1, taking simply L = Q (which
corresponding to having just one group Gi) is possible while it is often necessary to work with a
nontrivial number field K.

Finally, we notice that the two refinements provided by Conjectures 2.2.8 and 2.2.11 are
somehow independent and can be combined.

2.3 The language of differential modules and Frobenius modules

In this subsection, following standard ideas which go back to Dwork and Christol (see in particular
[Chr86a]), we reinterpret the main protagonists we have encountered so far using the more
powerful language of differential modules and Frobenius modules and use it to gain height on
Conjecture 2.2.6. This will help us to better understand what could be the mysterious groups Gi

by connecting them to the differential Galois group of the underlying differential equation.

2.3.1 Different types of modules

Differential modules. We begin with linear differential equations. It is a standard fact that
the categorical shadow of these equations is the notion of differential modules, whose definition is
recalled below.

Definition 2.3.1. Let K be a field equipped with a derivation ∂ : K → K. A differential module
(or a module with connection) over (K, ∂) is a finite dimensional K-vector space M , together with
an additive map ∇ satisfying

∀λ ∈ K, ∀m ∈M, ∇(λm) = ∂(λ)m+ λ∇(m).

We write Mod∇K for the category of differential modules over (K, ∂).

To any differential equation of the form

∂r(f) + ar−1∂
(r−1)(f) + · · ·+ a1∂(f) + a0f = 0 (ai ∈ K) (2.3.1)

we attach the differential module M = Ke0 ⊕ · · · ⊕Ker−1 with connection ∇ defined by

∇(ei) = ei+1 if 0 ≤ i ≤ r−2,

∇(er−1) = −(a0e0 + · · ·+ ar−1er−1).

The map f 7→
∑r−1

i=0 ∂
i(f)ei induces a bijection between the space of solutions in K of the

differential equation (2.3.1) with the space M∇=0 of horizontal vectors, that are, by definition,
vectors m such that ∇(m) = 0.
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This framework also allows for looking at solutions in extensions. More precisely, let L be an
extension of K over which the derivation ∂ extends. Given a differential module M over K, one
can form the tensor product L⊗K M and endow it with a connection defined by

∇(λ⊗m) = ∂(λ)⊗m+ λ⊗∇(m) (λ ∈ L,m ∈M).

The solutions of M over L are then defined as the space of horizontal vectors of L⊗K M , that is
(L⊗K M)∇=0.

Frobenius modules. For the general purpose of this article, we recall from the introduction
(see Equation (1.1)) that we are mostly interested in algebraic relations of the form

Y pn

+ cn+1Y
pn+1

+ · · ·+ c1Y
p + c0Y = 0 (2.3.2)

where Y is the unknown and the coefficients ci lie in some field of characteristic p which, in
our case of interest, is Fp(x) or an extension of the form ℓ(x) where ℓ/Fp is a field extension.
Fortunately, this type of equations can be handled very similarly to what we have presented
above for linear differential equations.

In the algebraic situation, the relevant objects are the so-called Frobenius modules that we
define now.

Definition 2.3.2. Let R be a ring equipped with an endomorphism φ : R → R. A Frobenius
module over (R,φ) is a finitely generated projective R-module M equipped with an additive map
φM :M →M such that

∀λ ∈ K, ∀m ∈M, φM (λm) = φ(λ) · φM (m).

We let ModφR denote the category of Frobenius modules over (R,φ).

Notation 2.3.3. When the ground ring R has characteristic p and φ : R→ R is the map x 7→ xq

(where q is a power of p), we write ModqR for ModφR.

The relationship between Frobenius equations and Frobenius modules is realized as follows.
Starting from Equation (2.3.2) with ci ∈ R, we define the Frobenius moduleM = Re0⊕· · ·⊕Rer−1

(where R is equipped with its natural Frobenius) with

φM (ei) = ei+1 if 0 ≤ i ≤ r−2,

φM (er−1) = −(c0e0 + · · ·+ cr−1er−1).

The solutions of Equation (2.3.2) then correspond to vectors m ∈M such φM (m) = m via the

map y 7→
∑r−1

i=0 y
pi

ei.

Galois representations. The last notion we would like to encapsulate in our new language
is, of course, that of Galois groups. For this, given a field K, we write GK for its absolute
Galois group, i.e., GK := Gal(Ksep/K). Given an auxiliary field E, we introduce the category
RepE(GK) of all E-linear finite dimensional representations of GK .

The connection with the Galois groups we used to consider earlier is as follows. Assume that
K contains E and let then x be an element in the separable closure Ksep of K. We consider its
Galois conjugate x1 = x, x2, . . . , xN ∈ Ksep and the E-vector space V they generate. Clearly V
is stable by the action of GK . Hence, it is a E-linear representation of GK , i.e., an object in the
category RepE(GK). Besides, if ρ : GK → GL(V ) is the morphism defining the representation,
one checks that Gal(x | K) ≃ im ρ.
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2.3.2 Katz’ functor

Katz’ functor connects Frobenius modules with Galois representations; in some sense, it is the
categorical realization of the operation that takes an algebraic equation of the form (2.3.2) and
produces the Galois group of one of its solutions.

Concretely, it is defined as follows. We pick a field K of characteristic p, together with a finite
extension Fq of Fp. We then define

V : ModqK −→ RepFq
(GK)

M 7−→
(
Ksep ⊗K M

)φ=1 (2.3.3)

where we let φ act on Ksep ⊗K M by λ ⊗m 7→ λq ⊗ φM (m) and where the notation “φ = 1”
means that we consider the subset of elements that are fixed by φ. When M comes from an
equation of the form (2.3.2) (and thus q = p), it follows directly from the definition that the
representation V(M) is the Fp-vector space of the solutions in Ksep equipped with the standard
Galois action.

To study Katz’ functor, it is convenient to introduce the following definition.

Definition 2.3.4. Let R be a ring equipped with an endomorphism φ : R→ R. We say that a
Frobenius module M ∈ ModφR is étale when the image of φM spans M .

We write Modφ,ét
K for the subcategory of ModφK consisting of étale Frobenius modules. Moreover,

when φ is the map x 7→ xq, we write Modq,étK for Modφ,ét
K (see also Notation 2.3.3).

Theorem 2.3.5 (Katz). Let K be a field of characteristic p and let q be a power of p. The

functor V induces an equivalence of categories Modq,étK
∼−→ RepFq

(GK). Moreover, it preserves

the dimension in the sense that, for all M ∈ Modq,étK , we have

dimK M = dimFq
V(M).

Proof. See [Kat73, Proposition 4.1.1].

Remark 2.3.6. There exists an explicit formula for the inverse functor M of V: if V is a Fq-linear
representation of GK , its corresponding étale Frobenius module is M(V ) := (Ksep ⊗K V )GK

where GK acts diagonally on the tensor product Ksep ⊗K V .

Beyond Katz’ theorem, it will be also important for our purpose to study the action of Katz’
functor on nonétale Frobenius modules. In this perspective, we set the following definition.

Definition 2.3.7. Let K be a field equipped with a ring endomorphism φ : K → K and let M
be a Frobenius module over (K,φ). The étale part of M is defined as

M ét :=
⋂
k≥0

⟨φk
M (M)⟩K

where the notation ⟨ · ⟩K stands for the K-span.

It is straightforward to check thatM ét is stable by φM , i.e., it is again a Frobenius module, and
that it is étale. In other words, the construction M 7→M ét defines a functor ModφK → Modφ,ét

K .

Lemma 2.3.8. We assume that K has characteristic p and that q is a power of p. Then, for all
M ∈ ModqK , we have V(M) = V(M ét).
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Proof. We form the quotient M/M ét which inherits an action of φM and thus is an object in
the category ModφK . Besides, it follows readily from the definition that φM acts nilpotently
on M/M ét. Therefore, it also acts nilpotently on Ksep ⊗K M/M ét, from which follows that
V(M/M ét) = 0. We now consider the exact sequence

0 −→M ét −→M −→M/M ét −→ 0

which remains exact after tensoring by Ksep. Taking then the fixed points under φ (which is a
left exact functor), we end up with

0 −→ V(M ét) −→ V(M) −→ V(M/M ét) = 0.

The lemma follows.

Remark 2.3.9. Lemma 2.3.8 tells us that M ét is the étale Frobenius module which corresponds
to the Galois representation V(M). With the notation of Remark 2.3.6, we then have M ét =
M(V(M)).

2.3.3 Frobenius structures on differential modules

The relationship between differential modules and Frobenius modules is far less concrete, but it
can nevertheless be approached through the notion of Frobenius structures. Basically, the idea is
to equip a differential module M with an extra structure which will eventually define a Frobenius
module after reduction modulo p.

In order to define it properly, we cannot continue working over Q(x) but need to move over
the p-adics. Precisely, we define the field Ep as the completion of Q(x) for the p-adic Gauss
norm (defined as the sup norm on the p-adic unit disc); it is the so-called field of p-adic analytic
elements. It is equipped with the derivation d

dx and a Frobenius map φ : Ep → Ep which comes
from the change of variables x 7→ xp.

Definition 2.3.10. Let (M1,∇1) and (M2,∇2) be two differential modules over Ep. A Frobenius
morphism is a φ-semilinear map Φ :M1 →M2 such that ∇2 ◦ Φ = pxp−1 · Φ ◦ ∇1.

It is instructive to understand what the effect of a Frobenius morphism at the level of
solutions is. The commutation relation of Definition 2.3.10 ensures that a Frobenius morphism
Φ : M1 → M2 induces a Qp-linear mapping on horizontal vectors Φ : M∇=0

1 −→ M∇=0
2 . If we

equip M1 and M2 with distinguished bases and if Mat(Φ) denotes the matrix of Φ in those bases,
we deduce that any solution (f1(x), . . . , fn(x)) of M1 produces a solution of M2 via the formula(

φ(f1(x)), . . . , φ(fn(x))
)
·Mat(Φ) =

(
f1(x

p), . . . , fn(x
p)
)
·Mat(Φ).

If we assume in addition that Φ : M1 → M2 is an isomorphism, then any solution of M2 can
be (uniquely) written in this way. Frobenius morphisms then appear as a general machinery
that permits to interpret the images under φ of a solution of a given differential equation as
linear combinations of the solutions of another differential equation and vice versa when Φ is
an isomorphism. Phrased in this way, we understand that they could provide a powerful tool
to find the algebraic relations we are looking for (remember that f(xp) = f(x)p after reduction
modulo p).

In order to fully take advantage of this observation, it is convenient to use the concept of
preimages under the Frobenius. To avoid unnecessary complications, we assume from now on that
we are given a D-finite series f(x) ∈ Z(p)[[x]] and that M is the differential module associated to
the linear differential equation over Ep of minimal order satisfied by f(x). A theorem of Christol
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(see [Ked10, Theorem 10.4.2]) then implies that M admits a preimage under the Frobenius, which
means that there exists a Frobenius isomorphism M (−1) →M whereM (−1) is another differential
module. Even better, one can apply Christol’s theorem repeatedly and get an infinite sequence of
Frobenius isomorphisms

· · · −→M (−3) ∼−→M (−2) ∼−→M (−1) ∼−→M.

We now come to an alternative: either the sequence of M (−i) is periodic or it is not. In the
first case, i.e., when there exists a positive integer h such that M (−h) is isomorphic to M as a
differential module, we say that M admits a strong Frobenius structure (of period h). When this
occurs, the composite

M ≃M (−h) ∼−→ · · · ∼−→M (−1) ∼−→M.

defines a structure of Frobenius modules on M for the twisting morphism φh. This makes the
connection we were looking for.

On the contrary, when M does not admit a strong Frobenius structure, the above construction
fails; however, in this case, we suspect that f(x) mod p is not algebraic.

Some examples. It is quite interesting to revisit some examples of Subsection 2.1 in light of
what precedes. Let us start with Example 2.1.2. Here f(x) = exp(arctan(x)) and we recall that,
whenever p ≡ 1 (mod 4), we had obtained the following alternative formula for f(x) as a p-adic
series:

f(x) = (1 + ix)
−i/2 · (1− ix)

i/2 ∈ Zp[[x]]

where i ∈ Zp is a square root of −1. We recall that we also decomposed the exponents ±i/2 in
base p as follows:

− i
2 = a0 + pa1 + p2a2 + · · · and i

2 = b0 + pb1 + p2b2 + · · ·

It turns out that this decomposition actually reflects the successive preimages by Frobenius of the

underlying differential module. Indeed, setting u1 := −i/2−a0

p = a1 + pa2 + · · · , we can rewrite

(1 + ix)
−i/2

= (1 + ix)
a0

(
(1 + ix)p

1 + ixp

)u1

(1 + ixp)
u1 .

Now we observe that the two first factors of the right hand side lie in Ep: it is obvious for the

first one, which is a polynomial, and it holds true for the second one as well because (1+ix)p

1+ixp

is a rational function, which is congruent to 1 modulo p. Proceeding similarly for the factor

(1− ix)
i/2

, we end up with a factorization of the form f(x) = g0(x)f1(x
p) where g0(x) ∈ Ep and

f1(x) = (1 + ix)
u1 · (1− ix)

v1

with v1 := i/2−b0
p = b1 + pb2 + · · · . Moreover, a simple computation shows that the function f1(x)

is a solution of the linear differential equation

y′(x) =
i(u1−v1) + (u1+v1)x

1 + x2
· y(x).

It is the preimage under the Frobenius of our initial differential equation for f(x). Repeating
this argument, we find that the successive preimages under the Frobenius are the differential
equations

y′(x) =
i(uk−vk) + (uk+vk)x

1 + x2
· y(x)
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MMod∇Q(x) ∈

MpMod∇Ep
∈

MpModφ
h

Ep
∈

M◦
pModφ

h,ét
E◦

p
∈

MpModq,étFp(x)
∈

VpRepFq(x)

(
GFq(x)

)
∈

①: Factorization over Ep

②: Frobenius structure

③: Finding a lattice

④: Reduction modulo p

⑤: Katz’ functor

Figure 1: From differential equations in characteristic 0 to Galois groups in characteristic p

with uk = ak + pak+1 + p2ak+2 + · · · and vk = bk + pbk+1 + p2bk+2 + · · · . The nonperiodicity of
the sequences (ak)k≥0 and (bk)k≥0, or equivalently that of the sequences (uk)k≥0 and (vk)k≥0,
now implies that the sequence of preimages under the Frobenius is not periodic as well. This
conclusion is perfectly in line with the fact that f(x) mod p is not algebraic.

Another interesting example to consider is Example 2.1.5 with the Apéry series. Here, we recall
that we had defined two functions g(x) and h(x) whose reductions modulo p satisfy interlaced
algebraic relations (see Equations (2.1.7)–(2.1.10)). Those equations suggest that the differential
equations that g(x) and h(x) satisfy are fixed by the Frobenius when p ≡ 1, 5, 7, 11 (mod 24) and
exchanged by the Frobenius when p ≡ 13, 17, 19, 23 (mod 24).

Similar patterns will often occur in Section 3, when we will study hypergeometric series.

2.3.4 The long road from Mod∇Q(x) to RepFq(x)(GFq(x))

All the previous constructions provide a path for going from modules with connections over Q(x)
(which encode the differential equation satisfied by f(x)) to Galois representations of the absolute
Galois group GFq(x) of Fq(x) (which encodes the Galois group of f(x) mod p). It consists in the
following steps.

① (Factorization over Ep) We “p-minimize” the differential equation we have for f(x), meaning
that we replace it by the differential equation over Ep of minimal order which is satisfied
by f(x); we emphasize that this operation may result in a drop of order even if our initial
differential equation was already minimal over Q(x). At the level of modules, this consists
in replacing M by a submodule Mp ⊆ Ep ⊗Q(x) M .

② (Frobenius structure) Following the discussion of Subsection 2.3.3, we equip Mp with a
Frobenius structure Φh :Mp →Mp, obtaining this way a Frobenius module over Ep for the
twisting morphism φh (where h is the period); we underline that this operation may fail if
the sequence of the Frobenius preimages of Mp is not periodic.
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③ (Finding a lattice) In order to reduce modulo p afterwards, we need to find an integral
structure inside Mp. Let E◦

p denote the valuation ring of Ep, that is the subring of Ep

consisting of elements of nonnegative valuation. We select a finitely generated E◦
p -submodule

M◦
p of Mp having the following properties: it generates Mp over Ep, it is stable by Φh and

it defines an étale Frobenius module over E◦
p .

Such a module may actually not exist; if it does not, we allow ourselves to change the
Frobenius structure, i.e., to replace Φh by Φh ◦ ι where ι is a Ep-linear automorphism of
Mp commuting with the connection. If even after this relaxation, we are still not able to
find a suitable module M◦

p , we agree that this step has failed.

④ (Reduction modulo p) We reduce M◦
p modulo p, i.e., we set Mp :=M◦

p /pM
◦
p . It is an étale

Frobenius module over Fp(x) for the twisting morphism f 7→ fq with q = ph.

⑤ (Katz’ functor) We finally apply Katz’ functor to get a representation of GFq(x) :=
Gal(Fq(x)

sep/Fq(x)). Some precaution should be taken here because Katz’ theorem requires
that the base field of the Frobenius module contains Fq, which is not the case in our setting.
We then first extend scalar to Fq(x), i.e., we define

Vp := V
(
Fq(x)⊗Fp(x) Mp

)
=
(
Fq(x)

sep ⊗Fp(x) Mp

)φ=1
.

All this process is summarized in Figure 1. Dashed arrows correspond to steps that may
fail. However, if a failure is encountered at some point, our feeling is that f(x) mod p cannot
be algebraic. On the contrary, when all operations succeed, it is known that f(x) mod p is
algebraic [Var21, Theorem 2.6]. What we expect actually is that f(x) mod p is somehow
“contained”, together with its conjugates, in the Galois representation Vp which is produced at the
end of the process. More precisely, if we let ρp : GFq(x) → GL(Vp) be the corresponding group
morphism, we expect the Galois group Gal(f(x) | Fq(x)) to be isomorphic to a quotient of the
image of ρp.

Remark 2.3.11. It worths noticing that Theorem 2.6 of [Var21] only requires the existence of a
strong Frobenius structure, and not that of a lattice. This suggests that Step ③ in our construction
could never fail.

2.3.5 Connecting Galois groups: insights towards our conjectures

The Tannakian language provides efficient tools to define Galois groups at each step of our
constructions and, to some extent, to follow them throughout the whole process. We refer to
[DM82] for an exposition of the Tannakian theory. Here, we just recall that the Tannakian
formalism attaches a “Galois group” to any object in a Tannakian category. Its definition goes
through the notion of constructions. Given T in a Tannakian category T , a construction from T
is by definition a subquotient of an object of the form

C := T⊗n1 ⊕ T⊗n2 ⊕ · · · ⊕ T⊗nt (ni ∈ Z)

where, when n is negative, T⊗n is understood as the dual of T⊗(−n). The Galois group GalT (T )
is then the group of linear automorphisms σ : T → T satisfying the following condition: for any
C as above and any subobject S ⊆ C, the natural extension of σ to C stabilizes S. One proves
that GalT (T ) is an algebraic subgroup of GL(T ).

We now analyze the effect on Galois groups of each step of Figure 1 in light of what precedes.
Step ① has already quite a nontrivial impact. To describe it properly, it is convenient to split it
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into two parts: firstly, we extend scalars to Ep and secondly, we minimize the differential equation.
Regarding scalar extension, it follows from the definition that we have an inclusion

GalMod∇
Ep

(Ep ⊗Q(x) M) ⊆ GalMod∇
Q(x)

(M).

Besides, if Ep ⊗Q(x) M admits a submodule M ′, any element of the Galois group of Ep ⊗Q(x) M
necessarily stabilizes M ′. Applying this remark with M ′ =Mp, we obtain a group morphism

ϖ : GalMod∇
Ep

(Ep ⊗Q(x) M) −→ GL(Mp)

and it follows from the Tannakian theory that the Galois group of Mp is the image of ϖ. As a
summary, one can retain that GalMod∇

Ep
(Mp) appears as a subquotient of GalMod∇

Q(x)
(M).

Although the steps ② and ③ seem to be the most delicate ones, their effect on the Galois
groups is quite harmless. Indeed, a theorem of Matzat [Mat09a; Mat09b] shows that

GalMod∇
Ep

(Mp) = GalModq,ét

E◦
p

(M◦
p )

as soon as M◦
p is defined. More precisely, the datum of the lattice M◦

p defines a prolongation to
Spec Zp of the algebraic group GalMod∇

Ep
(Mp), which was a priori only defined over Spec Qp.

Step ④ is a scalar extension and so, it has a similar effect on Galois groups as in Step ①:
the Galois group of Mp is a subgroup of the reduction modulo p of the Galois group of M◦

p .
Concerning Step ⑤, the same phenomenon occurs when extending scalars to Fq(x), and finally,
applying Katz’ functor is transparent at the level of Galois groups because it is an equivalence of
categories.

All in all, the conclusion is that the Galois group of f(x) mod p appears as a subquotient of a
certain scalar extension of the reduction modulo p of the differential Galois group of M . This
remark suggests that the groups Gi of Conjecture 2.2.6 could show up as subquotients of the
K-valued points of GalMod∇

Q(x)
(M). The fact that we are loosing dimensions when passing from

M to Mp also explains that Gi sometimes (naturally) embeds in GLm(K) with m < dimM .

Uniformity in p. So far, we have fixed a prime number p from the beginning and carried out
all our constructions and reasonings with this particular p. In fact, the content of Conjecture 2.2.6
(and its refinements) is somehow that all of this can be achieved uniformly with respect to p, with
precise control encoded by certain number fields!

Recycling the same set of ideas, one could also expect that some numerical invariants that we
have encountered along the way, e.g., the dimension of Mp, behave quite nicely when p varies.
This leads to the two following independent questions, which sound quite interesting to us, and
that we ask to the community.

Question 2.3.12. Let f(x) ∈ Q[[x]] be a D-finite series and, for all prime number p, let rp be
the minimal order of a differential equation over Ep satisfied by f(x). How does rp vary with
respect to p?

Question 2.3.13. Let M be a differential module over Q(x) and, for almost all prime number p,
let dp be the dimension over Fp(x

p) of the space of the solutions of M over Fp(x). By Cartier’s
Lemma (see [BCR24, Theorem 3.19]), dp is also the dimension of the kernel of the p-curvature of
M . How does dp vary with respect to p?

If the exponents at 0 of the minimal differential equation of a D-finite series f(x) ∈ Q[[x]] are
all 0, the function f(x) is said to have maximal unipotent monodromy (MUM) and one proves that
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rp = dp = 1 for almost all p. This answers Questions 2.3.12 and 2.3.13 in this case. In Section 3
(see Theorem 3.1.17), we will study the case where M is the differential module corresponding to
an hypergeometric operator H and show, in this situation, that dp depends only on the congruence
class of p modulo a common denominator of the parameters of H.

3 Hypergeometric series and their reductions modulo p

The hypergeometric differential operator is defined as

H(α,β) = −x
n∏

i=1

(
ϑ+ αi

)
+ ϑ

m∏
j=1

(ϑ+ βj − 1)
(
ϑ := x · d

dx

)
(3.0.1)

where n and m are positive integers, α = (α1, . . . , αn) ∈ (Q \ (−N))n and β = (β1, . . . , βm) ∈
(Q \ (−N))m. The solutions of the equation H(α,β)y = 0 over the rational numbers can be
expressed in terms of hypergeometric series

nFm (α,β;x) :=

∞∑
k=0

h(α,β; k)xk ∈ Q[[x]], (3.0.2)

with

h(α,β; k) :=
(α1)k · · · (αn)k
(β1)k · · · (βm)k

· 1

k!
∈ Q,

where (γ)k := γ · (γ + 1) · · · (γ + k − 1) denotes the rising factorial.
In the following we will restrict to the case m = n − 1. Moreover, if we consider a set of

parameters α,β ∈ Qn+(n−1), we set βn = 1 and write β both for the (n−1)-tuple of rational
parameters and for the n-tuple also including βn = 1. For given parameters α,β we denote by
d(α,β) the least common multiple of their denominators in reduced form. If the parameters are
clear, we will omit them from the notation and will simply write d.

Let us recall some facts about the hypergeometric differential equation H(α,β)y = 0. It is
Fuchsian, meaning that all of its singularities are regular. The singular points are 0, 1,∞ and the
sets of local exponents at those singular points are

at 0:
{
1− β1, . . . , 1− βn−1, 0

}
,

at 1:
{
0, 1, 2, . . . , n− 2,−1 + (

∑n
j=1 βj −

∑n
i=1 αi)

}
,

at ∞:
{
α1, . . . , αn

}
.

Finally, assuming that αi − βj ̸∈ Z for all i, j ∈ {1, . . . , n}, a Q-basis of solutions of H(α,β)y = 0
at the singularity 0 is given by

z1−βj
nFn−1 (1 +α− βj , 1 + β − βj ;x) , (3.0.3)

where 1 + βj − βj is omitted in the bottom parameter.
Hypergeometric functions and equations serve as test cases for many conjectures and investi-

gations concerning D-finite power series. For example, Christol conjectured that any globally
bounded D-finite power series is a diagonal of an algebraic multivariate series, and investigated this
for hypergeometric series [Chr86b]. Adamczewski and Delaygue, as attributed by Vargas-Montoya
[Var21, Conjecture 1.1], conjectured that the reduction modulo p of any G-function, which can be
reduced modulo an infinite number of primes, is algebraic over Fp(x) for almost all such primes p.
For hypergeometric series nFn−1, this statement follows from Christol’s work [Chr86a] showing
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that solutions of equations with strong Frobenius structure are p-automatic, and thus they are
algebraic, following earlier work by Christol [Chr79; Chr+80]. This result was made explicit by
Vargas-Montoya [Var21; Var24], bounding the algebraicity degree and giving an explicit shape of
an annihilating polynomial in the form of Equation (2.3.2). As test cases to Conjecture 2.2.6 and
its refinements we will study hypergeometric series for the remaining part of this article.

3.1 Reductions of hypergeometric series modulo p

In this section, we investigate how hypergeometric functions and equations behave when passing
to positive characteristic. Our first result classifies those prime numbers p, modulo which a given
hypergeometric function can be reduced, in terms of the repartition of the values exp(2iπλαi) and
exp(2iπλβj) (for λ varying in Z) on the complex unit circle. This refines a theorem of Christol
[Chr86b, Proposition 1], classifying all globally bounded hypergeometric functions, that is, those
where the reduction is possible modulo almost all primes. We refer to [DRR17, Section 5] for a
more recent treatment in English.

We then study the solution space of a hypergeometric differential equation modulo p and
describe an explicit basis of it. We connect in particular its dimension to numerical invariants
attached to the parameters α and β defining the underlying hypergeometric operator and show
that it only depends on the congruence of p modulo d, a common denominator for α,β. Our
results provide in particular a satisfying answer to Question 2.3.13, raised at the end of Section 2
in the case of hypergeometric functions.

3.1.1 Interlacing criteria

We denote the p-adic valuation of a rational number by vp(·). Further, we write {·}
0
(resp. {·}

1
)

for the decimal part function (resp. the decimal part where we assign to integers the value 1
instead of 0). Christol defines a total ordering ⪯ on Q as follows:

a ⪯ b :⇐⇒ {a}1 < {b}1 or ({a}1 = {b}1 and a ≥ b).

Let f(x) = nFn−1 (α,β;x) be a hypergeometric function with rational parameters α,β ∈(
Q \ (−N)

)2n−1
and set βn = 1. We denote by d the common denominator of all parameters.

Then Christol defines a function M : Q× (Z/dZ)× → Z by

M(x, λ) :=
∣∣{1 ≤ i ≤ n : λαi ⪯ x}

∣∣− ∣∣{1 ≤ j ≤ n : λβj ⪯ x}
∣∣. (3.1.1)

We note that the function M(·, λ) is piecewise constant and continuous from the left, and that
its jump points are among the values {αiλ}0 + Z and {βjλ}0 + Z.

We say that f(x) satisfies Christol’s interlacing condition for λ ∈ (Z/dZ)× if M(x, λ) ≥ 0 for
all x ∈ Q. To determine whether M(·, λ) is always positive, it suffices to check that M(λβj , λ) ≥ 0
for all j, or, to order the values of λαi and λβj according to ⪯ simultaneously and check if
among the first ℓ entries for 1 ≤ ℓ ≤ 2n of the joint ordered list there are always at least as
many entries of the form λαi as of the form λβj . If the parameters of a hypergeometric function
f(x) are pairwise incongruent modulo Z, Christol’s interlacing condition for λ can be interpreted
graphically on the unit circle as follows. We draw the two sets {exp(2iπλαi) : 1 ≤ i ≤ n} in red
and {exp(2iπλβj) : 1 ≤ j ≤ n} in blue on the unit circle. Then f(x) satisfies Christol’s interlacing
condition if and only if, going around the unit circle starting after 1, one always encounters at
least as many red points as blue ones.

Christol’s classification of globally bounded hypergeometric functions reads as follows [Chr86b,
Proposition 1].
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Figure 2: The function M(·, 1) for the function 3F2

((
1
6 ,

2
3 ,

4
3

)
,
(
1
3 ,

1
2

)
;x
)
in the interval [0, 3]

λ = 1 λ = 2 λ = 4 λ = 5 λ = 7 λ = 8

Figure 3: Christol’s interlacing condition depicted on the unit circle for the function

3F2

((
1
9 ,

4
9 ,

5
9

)
,
(
1
3 , 1
)
;x
)

Theorem 3.1.1 (Christol, 1986). The hypergeometric function f(x) = nFn−1 (α,β;x) with
α,β ∈ (Q \ (−N))2n−1 is globally bounded if and only is f(x) satisfies Christol’s interlacing
criterion for all λ ∈ (Z/dZ)×, where d denotes the common denominator of the parameters α,β.

Example 3.1.2. We consider f(x) = 3F2

((
1
6 ,

2
3 ,

4
3

)
,
(
1
3 ,

1
2

)
;x
)
. Then the functions M(·, 1) is

depicted in Figure 2. This function is always nonnegative, and easily one also checks that also
M(·, 5) takes no negative values. Similarly the function g(x) = 3F2

((
1
9 ,

4
9 ,

5
9

)
,
(
1
3 , 1
)
;x
)
satisfies

Christol’s interlacing condition for all values of λ ∈ (Z/9Z)× as shown in Figure 3. Christol’s
criterion implies that f and g are globally bounded.

In Subsection 3.1.2 below, we will prove the following extension of Christol’s theorem.

Theorem 3.1.3. Let f(x) = nFn−1 (α,β;x) =
∑∞

k=0 h(α,β; k)x
k be a hypergeometric func-

tion with rational parameters α,β ∈ (Q \ (−N))2n−1. Let d ∈ N be the smallest denomi-
nator of all parameters αi, βj and let p be a prime number, coprime to d. Assume that
p > 2d·max{|αi|, |βj |, 1}+1, and consider the subgroup ⟨p mod d⟩ ⊆ (Z/dZ)×. Then f(x) can be
reduced modulo p if and only if Christol’s interlacing condition is fulfilled for all λ ∈ ⟨p mod d⟩.
For all other p, vp(h(α,β; k)) is not bounded from below.

Remark 3.1.4. We note in particular, that if Christol’s interlacing condition is not fulfilled for
λ = 1, then f(x) cannot be reduced modulo any prime number p, as 1 ∈ ⟨p mod d⟩ for all p.

Example 3.1.5. Let
f(x) = 2F1

((
1
2 ,

2
3

)
,
(
1
3

)
;x
)

At the first glance one might be tempted to think that f(x) can be reduced modulo prime numbers
congruent to 5 modulo 6, as Christol’s interlacing condition in fulfilled for λ = 5 (see the left
hand part of Figure 4). However, by Remark 3.1.4, this is not the case.

Example 3.1.6. Consider the hypergeometric function

g(x) = 2F1

((
1
4 ,

1
2

)
,
(
15
4

)
;x
)
= 1 +

1

30
x+

1

152
x2 +

15

6992
x3 + . . .
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λ = 1 λ = 5 λ = 1 λ = 3

Figure 4: Christol’s interlacing condition illustrated on the unit circle for the function f(x) =

2F1

((
1
2 ,

2
3

)
,
(
1
3

)
;x
)
(on the left) and the function g(x) = 2F1

((
1
4 ,

1
2

)
,
(
15
4

)
;x
)
(on the right)

For large enough primes p that are congruent to 3 modulo 4 the function g(x) cannot be reduced
modulo p, while reduction is possible for almost all prime numbers congruent to 1 modulo 4, as
the right hand part of Figure 4 shows. However, taking p = 5, we see that already the coefficient
of x in g(x) is 1/30, which cannot be reduced modulo 5. This does not contradict Theorem 3.1.3,
as 5 < 2 · 4 · 15/4 + 1 = 31.

We also mention here a similar criterion for the algebraicity of hypergeometric functions. It
was formulated by Christol [Chr86b, Proposition 3, p.15 Corollary] in the same paper as the
criterion for global boundedness, although his proof relies on the validity of the p-curvature
conjecture for hypergeometric differential equations, which follows from Katz’ work [Kat72], as
elaborated in [Kat90]. Shortly after, it was independently stated by Beukers and Heckman [BH89,
Theorem 4.8] with a more or less elementary proof, at the same time giving an elementary proof
of the Grothendieck p-curvature conjecture for hypergeometric equations.

Theorem 3.1.7 (Christol, 1986; Beukers–Heckman, 1989; Katz, 1990). Let f(x) = nFn−1 (α,β;x)
with α,β ∈ (Q \ (−N))2n−1 be a hypergeometric function and assume that αi − βj , αi ̸∈ Z for all
i, j. Denote by d the common denominator of the parameters α,β and set βn = 1. Then f(x) is
algebraic over Q(x) if and only if for all j = 1, . . . , n and all λ ∈ (Z/dZ)×, we have

M(λβj , λ) = 0.

In the interpretation on the unit circle, this means that the sets {exp(2iπλαi) : 1 ≤ i ≤ s}
and {exp(2iπλβj) : 1 ≤ j ≤ s} alternate on the unit circle. We also underline that the criterion
of Theorem 3.1.7 only works for hypergeometric functions with rational parameters without
integer differences. A complete classification of algebraic hypergeometric functions with arbitrary
complex parameters is given in [FY24].

Example 3.1.8. The hypergeometric function 3F2

((
1
9 ,

4
9 ,

5
9

)
,
(
1
3 , 1
)
;x
)
is not algebraic (although

it is globally bounded), as it can be seen from the graphics in Figure 3.

By standard results from differential Galois theory, it is equivalent that a hypergeometric
function nFn−1 (α,β;x) is algebraic and that the monodromy group of its minimal differential
operator, which is given by H(α,β) under the assumption αi − βj ̸∈ Z, is finite. The following
result, appearing in Levelt’s dissertation [Lev61] (and there attributed to N. G. de Bruijn), see also
[BH89, Theorem 3.5], gives an explicit realization of the monodromy group of a hypergeometric
differential equation as a group of matrices.

Theorem 3.1.9. We assume that there are no integer differences between the sets α,β ∈
(Q \ (−N))n with βn = 1 of parameters of a hypergeometric operator H(α,β). Let A0, . . . , An−1
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and B0, . . . , Bn−1 be defined by the identities

A(x) :=

n∏
i=1

(x− exp(2iπαi)) = xn +An−1x
n−1 + · · ·+A0

B(x) :=

n∏
j=1

(x− exp(2iπβj)) = xn +Bn−1x
n−1 + · · ·+B0.

We define the matrices

A =


0 0 · · · 0 −A0

1 0 · · · 0 −A1

0 1 0 −A2

...
. . .

...
0 0 1 −An−1

 , B =


0 0 · · · 0 −B0

1 0 · · · 0 −B1

0 1 0 −B2

...
. . .

...
0 0 1 −Bn−1

 .

Then A is the local monodromy matrix of H(α,β) at infinity, B−1 is the local monodromy matrix
at 0 and together they generate the global monodromy group of H(α,β).

3.1.2 Proof of Theorem 3.1.3

We start by recalling some technical results of Christol from his proof of Theorem 3.1.1. We write
f(x) = nFn−1 (α,β;x) =

∑
k h(α,β; k)x

k and shorthand h(α,β; k) =: hk. We set βn = 1. Let q
be coprime to d and let ∆ ∈ Z be such that ∆q ≡ 1 (mod d). Then we define

V (x, q) :=

∣∣∣∣{1 ≤ i ≤ n : {∆αi}1 −
αi

q
< x

}∣∣∣∣− ∣∣∣∣{1 ≤ j ≤ n : {∆βj}1 −
βj
q
< x

}∣∣∣∣ . (3.1.2)

Christol [Chr86b, p.6., Equation (6)] proves the following on the p-adic valuation of the coefficients
of a hypergeometric function.

Lemma 3.1.10 (Christol). We have vp(hk) =

∞∑
r=1

V
({

k
pr

}
0
, pr
)
.

For each α ∈ Zp and q = pr for some positive integer r, we uniquely write α = qQ(α, q)−R(α, q)
with Q(α, q) ∈ Zp and 0 ≤ R(α, q) < q. Christol also proves the following about the quantities
defining V [Chr86b, Lemma 4]:

Lemma 3.1.11 (Christol). Let γ ∈ 1
dZ \ (−N), let p be a prime number not dividing d. Let r be

a positive integer such that pr > d·|γ| and let ∆ be such that ∆p ≡ 1 (mod d). Then we have

R(γ, pr)

pr
= {γ∆r}

1
− γ

pr
.

The following two Lemmata are implicitly part of Christol’s proof of the criterion for global
boundedness of hypergeometric functions.

Lemma 3.1.12 (Christol). Let 0 < x < 1
2d and let p be a prime number not dividing d. We choose

∆ such that ∆p ≡ 1 (mod d) and let r be a positive integer such that pr > 2d·max{|αi|, |βj |}.
Then

(i) we have V (x, pr) = 0, and
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(ii) for all j ∈ {1, . . . , n}, we have

V

(
R(βj , p

r)

pr
+ x, pr

)
= M(βj∆

r,∆r).

Proof. For (i), we note that

{γ∆r}1 −
γ

pr
>

1

d
− 1

2d
>

1

2d

for all γ ∈ {α1, . . . , αn, β1, . . . , βn}, as {γ∆r}1 ∈ 1
dN>0. Therefore V (x, pr) = 0.

For (ii), we write ξj = {βj∆r}1 −
βj

pr and notice, as Christol, that

lim
x→ξ+j

V (x, pr) = M(∆rβj ,∆
r).

Indeed, for all γ, δ ∈ {α1, . . . , αn, β1, . . . , βn}, the condition {γ∆r}1 − γ
pr ≤ {δ∆r}1 − δ

pr is
equivalent to γ∆r ⪯ δ∆r because of the bound on pr. Moreover, by Lemma 3.1.11, we know that

R(βj , p
r)

pr
= {βj∆r}1 −

βj
pr
.

Finally, it follows as in the proof of (i) that the function V (·, pr) is constant on the interval(
R(βj ,p

r)
pr ,

R(βj ,p
r)

pr + 1
2d

)
.

Lemma 3.1.13 (Christol). We assume pr > 2d·max(|αi|, |βj |) is coprime with d, we choose ∆
such that p∆ ≡ 1 (mod d) and assume that f(x) satisfies Christol’s interlacing condition for ∆r.
Then V (x, pr) ≥ 0 for all x ∈ Q.

Proof. The function V (·, pr) is piecewise constant and its jumps of negative height happen at the
values {βj∆r}1 − βj/p

r. By the assumption and Lemma 3.1.12.(ii), the function V (·, pr) is still
positive after these jump points.

We are now ready to complete the proof of Theorem 3.1.3. We assume that Christol’s
interlacing criterion is fulfilled for all λ ∈ ⟨p mod d⟩. Then, by Lemma 3.1.10, we have

vp(hk) =
∞∑
r=1

V
({

k
pr

}
0
, pr
)

for all k. From Lemma 3.1.13, we see that each of the summands is nonnegative, and thus
vp(hk) ≥ 0 for all k. Conversely, let us assume that there is λ ∈ ⟨p mod d⟩ such that Christol’s
interlacing condition is not fulfilled. We denote by m the minimal positive integer such that
λ ≡ ∆m (mod d) and set ℓ := ordd(p) = |⟨p mod d⟩|. We choose j in such a way that

M(∆mβj ,∆
m) =

∣∣{1 ≤ i ≤ n : ∆mαi ⪯ ∆mβj}
∣∣− ∣∣{1 ≤ i ≤ n : ∆mβi ⪯ ∆mβj}

∣∣ < 0.

For any a ∈ N, we will construct k such that vp(hk) ≤ −a. To do this, we first set km+(a−1)ℓ :=

R(βj , p
m+(a−1)ℓ). Successively for r = m+ (a− 1)ℓ− 1,m+ (a− 1)ℓ− 2, . . . , 1, we then consider

the unique integer dr ∈ {0, 1, . . . , pr−1} such that

kr + dr−1 ≡

{
0 (mod pr−1) if r ̸≡ m (mod ℓ)

R(βj , p
r−1) (mod pr−1) otherwise,
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and set kr−1 := kr + dr−1. We finally take k := k1. For each r, we then have dr−1 + · · ·+ d0 ≤
pr−1 + · · ·+ p+ 1 = pr−1

p−1 < pr

2d , which ensures that k satisfies

k ∈


[
R(βj , p

r) + 1, R(βj , p
r) + pr

2d

)
(mod pr) if r < ℓ · a and r ≡ m (mod ℓ)[

1, p
r

2d

)
(mod pr) otherwise.

Thus, we get
{

k
pr

}
0
< 1

2d for all r ̸≡ m (mod ℓ) and all r > aℓ. For r = m,m+ ℓ, . . . ,m+(a−1)ℓ

we have
{k−R(βj ,p

r)
pr

}
0
≤ 1

2d , and therefore, by Lemma 3.1.12,

V
({

k
pr

}
0
, pr
)
=

{
M(∆rβj ,∆

r) r = m,m+ ℓ, . . . ,m+ (a− 1)ℓ

0 otherwise.

Finally, using Lemma 3.1.10, we compute

vp(hk) =

∞∑
r=1

V
({

k
pr

}
0
, pr
)
= aM(∆mβj ,∆

m) ≤ −a.

Remark 3.1.14. For small prime numbers p it is enough to check the p-adic evaluation of finitely
many coefficients to conclude that the hypergeometric function might be reduced properly
modulo p. Indeed, let r0 be such that pr0 > 2d·max{|αi|, |βj |, 1}+ 1. Then, for all n, we have

vp(hk) =

∞∑
r=1

V
({

k
pr

}
0
, pr
)
=

r0−1∑
r=1

V
({

k
pr

}
0
, pr
)
+

∞∑
r=r0

V
({

k
pr

}
0
, pr
)

where the right summand is always positive, if Christol’s interlacing condition is fulfilled for all
λ ∈ ⟨p mod d⟩, and the left summand is periodic in k with period pr0−1.

Example 3.1.15. Continuing Example 3.1.5, that is

f(x) = 2F1

((
1
2 ,

2
3

)
,
(
1
3

)
;x
)
=
∑
n≥0

hnx
n,

we can construct explicitly an integer n such that the denominator of hn is divisible by 172 using
the strategy of the proof of Theorem 3.1.3. We have a = 2, ℓ = 2 and m = 2 and use βj = 1/3.
With this, we compute k4 = 27840, k3 = 29478, k2 = 29574 and k1 = 29580. And, indeed, checking
with a computer algebra system, we convince ourselves that the 17-adic evaluation of h29580 is −2.

3.1.3 Solutions of the hypergeometric differential equation modulo p

We now discuss the question of determining the dimension of the space of solutions of a hyper-
geometric differential equation modulo p in Fp[[x]] when p does not divide d. It turns out that
this dimension is also encoded by the relative position of the exponentials of αi and βj on the
unit complex circle; the slight difference between what precedes is that we will not work with the
reductions of αi and βj modulo Z, but modulo p. More precisely, for each index i ∈ {1, . . . , n},
we consider the complex number

αi,p := ζ2p · ζ−αi mod p
p = exp

(
2iπ ·

(
1

2p
− αi mod p

p

))
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and color it in green. We underline that the previous definition is not ambiguous because the
fraction (αi mod p)/p is well-defined modulo Z. In concrete terms, ζ−αi mod p

p = ζ
−αi,p
p where

αi,p is an integer which is congruent to αi modulo p. Similarly, we color in yellow the points

βj,p := ζp · ζ−βj mod p
p = exp

(
2iπ ·

(
1

p
− βj mod p

p

))
for j varying in {1, . . . , n} as well. Since βn = 1, the point 1 ∈ C is always colored in yellow.

Definition 3.1.16. The p-interlacing number of (α,β) is the number of times we observe a
green point followed by a yellow one (or, equivalently, a yellow one followed by a green) when
running clockwise through the unit circle.

The p-interlacing number will allow us to answer Question 2.3.13 for hypergeometric equations.
The proof of the following result can be easily deduced from Katz’ results on the p-curvature of a
hypergeometric operator H = H(α,β) [Kat90, Proof of Sublemma 5.5.2.1, p. 174 f.]. Below, we
reformulate it in a more down-to-earth fashion, avoiding the use of the p-curvature.

Theorem 3.1.17. Let Tp(α,β) denote the set of exponents t corresponding to a yellow point for
which there is a green point before we reach the next yellow point when running clockwise on the
unit complex circle. For t ∈ Tp(α,β), we denote by kt the exponent corresponding to the next
green point. We set

ft(x) :=

kt−1∑
k=t

h(α,β; k) · p−vp(h(α,β;t))xk. (3.1.3)

The family (ft(x))t∈Tp(α,β) is a Fp(x
p)-basis of the space of solutions of H(α,β).

In particular, the dimension of this vector space is given by the p-interlacing number of (α,β).

Proof (after Katz). We view Fp(x) as a p-dimensional vector space over Fp(x
p). The operator

H(α,β) is a linear endomorphism of this vector space. It is determined by H(α,β)(xk) =
−A(k)xk+1 + B(k)xk, where A(k) =

∏n
i=1(k + αi) and B(k) =

∏n
j=1(k + βj − 1). We chose

m ∈ Fp, such that m ≡ 1− αi (mod p) for some i ∈ {1, . . . , n}. The matrix of this linear map in
the basis (xm, xm+1, . . . , xm+p−1) is of the form

B(m) 0 0 · · · 0 −A(m+ p− 1)
−A(m) B(m+ 1) 0 · · · 0 0

0 −A(m+ 1) B(m+ 2) 0 0
...

. . .
. . .

...

0 0 0
. . . B(m+ p− 2) 0

0 0 0 −A(m+ p− 2) B(m+ p− 1)


,

where the top right entry is zero, as A(m + p − 1) = 0 by definition. The matrix decomposes
into a block diagonal form, each zero of A separating two blocks. Each of the blocks is a lower
diagonal matrix with consecutive values of B on the main diagonal, and consecutive values of A,
all nonzero, on the diagonal below. The co-rank of this matrix is at most one, as the bottom left
minor of order one less is non-zero. Moreover as the blocks are lower triangular, the co-rank is
zero is and only if all entries on the main diagonal are different from zero.

Consider such a block of co-rank one and let b := 1− βj (mod p) be the last zero of B in this
block, and let a := −αi′ (mod p) the following zero of A. Then it is easy to convince oneself, that

vb :=
(
0 · · · 0 1 A(b)

B(b+1)
A(b)A(b+1)

B(b+1)B(b+2) · · · A(b)···A(a−1)
B(b+1)···B(a)

)⊤
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is a well-defined vector in the kernel of this block. It corresponds to the function h(α,β; b)−1fb(x).
The proposition follows from these observations.

Remark 3.1.18. If we assume that f(x) = nFn−1 (α,β;x) can be reduced modulo p, then the
truncation at xp of f(x) mod p is a linear combination of the polynomials ft(x). Those t, for
which the polynomials ft(x) have nonzero coefficients in this combination, are precisely the
elements of the set

Sp(α,β) :=
{
r ∈ {0, . . . , p− 1} : r ≡ 1−βj (mod p) for some j and vp

(
h(α,β; r)

)
= 0
}
. (3.1.4)

Remark 3.1.19. In [Dwo90], Dwork constructed a differential field extension of Fp[x] defined

by considering countably many variables zi with z′i =
z′
i−1

zi−1
, resembling the derivation rule of

iterated logarithms in characteristic 0. Dwork’s construction provides a full basis of n solutions of
differential equations with nilpotent p-curvature, such as the hypergeometric differential equation.
Indeed, the Chudnovsky’s showed in [CC85] that minimal differential operators of G-functions,
such as hypergeometric functions nFn−1 with rational parameters and no integer differences
between them [Gal81], are globally nilpotent, i.e., they have p-curvature 0 for almost all prime
numbers. In [FH23], Dwork’s ideas are extended to arbitrary regular singular differential equations
with coefficients in Fp[[x]], and an algorithm for explicitly computing solutions in the extension is
depicted. Applying this to the hypergeometric differential equation H(α,β)y = 0, we find a basis

of n linearly independent polynomial solutions of the form ft(x) =
∑kt−1

k=t gk,t(z1, z2, . . .)x
k ∈

Fp[x, z1, z2, . . .] with kt ≤ 2p and gk,t(z1, z2, . . .) ∈ Fp[z1, z2, . . .] for all t = 1− βj mod p.

We next discuss how the number of solutions of the reduction of a fixed hypergeometric
differential equation H(α,β)y = 0 with rational coefficients modulo p varies with the prime
number p. Let d denote again the common denominator of the parameters α,β ∈ (Q \ (−N))2n−1

of H(α,β).

Proposition 3.1.20. Let p > 2d·max{|αi|, |βj |, 1} and choose ∆ such that p∆ ≡ 1 (mod d).
Then the p-interlacing number of (α,β) is equal to the number of local minima in the cyclic
sequence (M(γk∆,∆))2nk=1, where {γk} = {∆αi} ∪ {∆βj} and γ1 ≺ γ2 ≺ . . . ≺ γ2n. In particular,
the number of solutions of the hypergeometric differential equation in Fp[[x]] for large characteristics
p depends only on the congruence class of p modulo d.

Proof. We know from Lemma 3.1.11 that for p > 2d·max{|αi|, |βj |, 1} we have

R(αi, p)

p
= {αi∆}

1
− αi

p
.

Moreover we have seen in the proof of Lemma 3.1.12 that

{γ∆}1 −
γ
p < {δ∆}1 − δ

p ⇐⇒ γ∆ ⪯ δ∆
(
γ, δ ∈ 1

dZ
)
. (3.1.5)

This shows that the (negative) residues R(γk, p) of the parameters γk modulo p are ordered in the
same way as the decimal parts {γk∆}

1
. Finally, a block of consecutive elements colored in yellow

(resp. green), corresponds to consecutive zeroes of A(t) (resp. B(t)) in Fp, which then correspond
to a block of increasing respectively decreasing sequence elements of the sequence (M(γk∆,∆))2nk=1,
which in turn is equal to the number of local minima attained in this sequence.

Remark 3.1.21. Assuming that αi − βj ̸∈ Z, Proposition 3.1.20 can be visualized geometrically on
the unit circle. Indeed, under the assumptions of the proposition, the equivalence (3.1.5) shows
that the points αi,p, βj,p (1 ≤ i, j ≤ n) are ordered in the same way on the unit complex circle
than the points exp(2iπ∆αi), exp(2iπ∆βj) (1 ≤ i, j ≤ n).
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λ = 1 λ = 3 λ = 5 λ = 7

Figure 5: The sets {exp(2iπλαi)} and {exp(2iπλβj)} for 3F2

((
1
8 ,

3
8 ,

1
2

)
,
(
1
4 ,

5
8

)
;x
)

Example 3.1.22. The hypergeometric function f(x) = 3F2

((
1
8 ,

3
8 ,

1
2

)
,
(
1
4 ,

5
8

)
;x
)
is not globally

bounded. Christol’s interlacing condition is fulfilled for λ = 1, 3, but not for λ = 5, 7. Therefore,
according to Theorem 3.1.3, f(x) can be reduced modulo almost all prime numbers congruent
to 1 and 3 modulo 8, but almost all prime numbers congruent to 5 or 7 modulo 8 appear
up to arbitrarily high powers in the denominators of the coefficients of f(x). Moreover, the
Fp[[x

p]]-dimension of the solutions of the hypergeometric differential equation

H
((

1
8 ,

3
8 ,

1
2

)
,
(
1
4 ,

5
8

))
y = 0

in Fp[[x]] is for sufficiently large primes p, according to Theorem 3.1.17 and Proposition 3.1.20,
two if p ≡ 1, 7 (mod 8) and one otherwise. All this information can be read off from Figure 5.

3.2 Algebraicity modulo p and Galois groups

In [Var24], it was shown that the reductions of hypergeometric functions modulo p are algebraic
over Fp(x). In this subsection, we recall the methods of loc. cit. and develop them further in
order to get annihilating polynomials of smaller sizes. This will be important for the computations
of the Galois groups later on.

3.2.1 The Dwork map

A main tool in the construction is the Dwork map Dp : Z(p) → Z(p), defined by Euclidean
division: as before, we write γ ∈ Z(p) uniquely as γ = pQ(γ, p)−R(γ, p) with Q(γ, p) ∈ Z(p) and
0 ≤ R(γ, p) < p. We set Dp(γ) := Q(γ, p). In other words, Dp is uniquely defined by the relation

p ·Dp(x)− x ∈ {0, 1, . . . , p−1}.

We collect a few facts about Dp.

Lemma 3.2.1. (1) For γ ∈ Z(p), let

−γ = γ(0) + pγ(1) + p2γ(2) + · · ·

be the p-adic expansion of −γ. Then, for any integer k ≥ 1,

−Dk
p(γ) = γ(k) + pγ(k+1) + p2γ(k+2) + · · · .

(2) The Dwork operator Dp acts on Z(p)/Z; more precisely, for any fixed d ∈ N not divisible by

p, it acts on ( 1dZ)/Z by multiplication with p−1.

(3) The Dwork operator Dp maps (0, 1] ∩ 1
dZ to itself.
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(4) For γ ∈ (0, 1] ∩ Z×
(p), the smallest positive integer ℓ such that Dℓ

p(γ) = γ is equal to the

smallest positive integer ℓ such that pℓγ ≡ γ (mod Z), that is, if γ = c
d with gcd(c, d) = 1,

ℓ is given as the order of p modulo d.

Proof. The first assertion follows directly from the definition when k = 1. For general k, it follows
by induction. For (2), we write γ = c

d with gcd(c, d) = 1. We then have c
d = pDp(γ)− R(γ, p)

with R(γ, p) ∈ {0, 1, . . . , p− 1}, so clearly Dp(γ) ∈ 1
dZ, say Dp(γ) =

e
d . Then c ≡ pe (mod d), so

e only depends on c mod d and Dp indeed acts by multiplication with p−1. For (3), keeping the
previous notation, we note that e > p implies c = pe − R(γ, p)d and then c > d, contradicting
0 < c ≤ d. Likewise, if e ≤ 0, then c ≤ 0, also a contradiction. The last point is obvious from
what precedes.

For γ ∈ Z(p), let ℓp(γ) denote the smallest positive integer ℓ such that pℓγ ≡ γ (mod Z) as
in Lemma 3.2.1.(4). More generally, given an arbitrary sets of parameters α,β ∈ Zn+(n−1)

(p) ,

we define ℓp(α,β) as the smallest positive integer such that D
ℓp(α,β)
p (α) ≡ α (mod Z) and

Dp(β)
ℓp(α,β) ≡ β (mod Z), where these equations are to be read as equalities of sets. In

particular, ℓp(α,β) always divides the order of p in (Z/dZ)×, where d denotes the common
denominator of the parameters. However, in general there is no equality, as demonstrated by the
following example.

Example 3.2.2. We have ℓ13((
1
7 ,

6
7 ), (

1
2 )) = 1, as D13(

1
7 ) =

6
7 , D13(

6
7 ) =

1
7 and D13(

1
2 ) =

1
2 . At

the same time we have ord14(13) = 2.

When the parameters α,β are clear from the context, we will suppress them in the notation
and write simply ℓp for ℓp(α,β).

3.2.2 The hypergeometric relation graph

We are going to construct a graph, whose vertices correspond to parameters of hypergeometric
functions, and whose edges will encode algebraic relations between those functions. We denote by

Vp :=
(
Z(p) \ (−N)

)n+(n−1)

the set of vertices corresponding to all possible parameters. Moreover, we let

Vp(α,β) :=
{
(α′,β′) ∈ Vp : αi ≡ α′

i (mod Z), βj ≡ β′
j (mod Z)

}
.

These sets form a partition of Vp.
We define the hypergeometric relation graph Gp as the following directed graph with labeled

edges. The vertices are given by Vp. For the edges we carry out the following construction. For
γ ∈ Zm

(p) and let r ∈ N, we put

Dp,r(γ) :=

{
Dp(γ) + 1 if (γ)r ∈ pZ(p)

Dp(γ) otherwise.

For every s ∈ Sp(α,β), as defined in Equation (3.1.4), we connect (α,β) ∈ Vp with Dp,s(α,β) ∈
Vp with a directed edge e : (α,β) → Dp,s(α,β) labeled by the polynomial Q(e) := fs(x) as
defined by Equation (3.1.3).

We define Gp(α,β) as the sub-graph, of Gp containing (α,β), and all vertices reachable by an
oriented path, starting at (α,β).
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Level 0

Level 1

Level 2

Level 3

Level 4

Level 5 Level 6

Level 7

Level 8

Level 0

Level 1

Level 2

Figure 6: The shape of the graph Gp(α,β) when β = (1, . . . , 1)

Lemma 3.2.3. (1) Let γ = c
d ∈ Z(p) \ (−N), where p is a prime number with p > 2d·|γ|. Then

Dp(γ) ∈ (0, 1]

(2) Let r ∈ N and M ≥ 2p−1
p−1 . If |γ| ≤M , then |Dp,r(γ)| ≤M .

Proof. For (1), we first assume by contradiction that Dp(γ) > 1. We have Dp(γ) ∈ 1
dZ, and so

pDp(γ)− γ ≥ (p+ p/d)− γ ≥ p,

contradicting the definition of Dp. Similarly, if Dp(γ) < 0, we obtain

pDp(γ)− γ ≤ (−p/d)− γ < 0,

again contradicting the definition of Dp. Finally, if Dp(γ) = 0, we must have −γ ∈ {0, 1, . . . , p−1},
a contradiction to our assumption.

For the second part, we have pDp(γ) ∈ γ + {0, 1, . . . , p− 1}. So −M ≤ pDp(γ) ≤ γ + p− 1 ≤
M + p− 1, and therefore −M ≤ −M/p ≤ Dp,r(γ) ≤ Dp(γ) ≤ M+p−1

p + 1 ≤M .

We conclude that, for each choice of (α,β), the graph Gp(α,β) is a finite graph. This follows
from the fact that for large enough M the finite set 1

d [−M,M ] is mapped into itself by Dp,r, as
shown by the Lemmata 3.2.1 and 3.2.3.

Let us assume that (α,β) ∈ (0, 1]n+(n−1). In Gp(α,β), we say that a vertex (α′,β′) is at level
k ∈ {0, 1, . . . , ℓp− 1} if it is in V(Dk

p(α),Dk
p(β)). We define the width of level k of Gp(α,β) as the

number of vertices on level k, and the width of the graph as the minimum of the widths of each
level. For arbitrary (α,β), we say that the width of Gp(α,β) is given by the width of Gp(ᾱ, β̄)
with ᾱ = {α}1 and β̄ = {β}1 . This will make sense after the Proposition 3.2.5, in which we show
that (at least for large enough p), the graph Gp(ᾱ, β̄) is an induced subgraph of Gp(α,β).

Example 3.2.4. We consider the case where β = (1, . . . , 1). Then, for all integer k, we have
Dk

p(β) = (1, . . . , 1) as well and that the set Sp(D
k
p(α), (1)) is the singleton {0}. It follows by

induction that each vertex in Gp(α,β) is of the form (Dk
p(α), (1)) and has only one outgoing edge

to (Dk+1
p (α), (1)) Hence the graph Gp(α,β) has a shape of a “ρ,” as drawn in Figure 6. The

value ℓp(α,β) is the length of the “circle part” (it is 9 on the drawing of Figure 6) and the level
increases by 1 modulo ℓp(α,β) each time we move from a vertex to the next one.

In addition, the vertices in the circle part are characterized by the fact that the corresponding
Dk

p(α) has all its coordinates in (0, 1]. In particular, when (α,β) itself is in (0, 1]n+(n−1), the
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Level 0

Level 1

Level 2

Level 3

Figure 7: The graph Gp(α,β) for α = (−6/25, 9/25, 39/25, 54/25, 74/25),β = (−9/5, 3/5, 9/5, 3)
with the vertex (α,β) drawn in green, and the vertex (ᾱ, β̄) drawn in blue for p ≡ 13 (mod 25)
and p > 200. All edges are oriented downwards except marked otherwise.

initial part before the circle is not present and the graph thus reduces to a circle. For arbitrary
(α,β), Proposition 3.2.5 below ensures that, when p is large enough, the initial part is constituted
of at most one point.

Proposition 3.2.5. Let α,β ∈ (Q \ (−N))n+(n−1) be two sets of parameters of a hypergeometric
function with common denominator d and let p be a prime with p > 2d·max{|αi|+ 1, |βj |+ 1},
we choose ∆ such that p∆ ≡ 1 (mod d) and set ᾱ = {α}

1
and β̄ = {β}

1
.

(1) Assuming α = ᾱ and β = β̄, there is an edge in Gp(α,β) from any vertex at level k to any
vertex at level k + 1 for all k taken modulo ℓp.

(2) If (α,β) ∈ Gp(ᾱ, β̄) then Gp(ᾱ, β̄) = Gp(α,β). Otherwise, Gp(ᾱ, β̄) is the induced subgraph
of Gp(α,β) obtained by removing the vertex (α,β).

(3) The shape of Gp(α,β) only depends on the congruence class of p modulo d.

(4) Assuming α = ᾱ and β = β̄, the width at level k is equal to the number of βj such that
M(∆k−1βj ,∆

k−1) = 0, and the width of Gp(α,β) is at most equal to the number of solutions
of H(α,β)y = 0 that can be reduced modulo p.

Figure 7 shows the typical shape of the induced subgraph G(α,β) of the hypergeometric
relation graph, corresponding to a pair of parameters (α,β) for a prime number p, large enough
with respect to the common denominator d of the parameters.

Proof. We will show that the vertices on level k are given by(
Dp,r(D

k−1
p (α)),Dp,r(D

k−1
p (β))

)
(3.2.1)

for r ∈ Sp(D
k−1
p (α),Dk−1

p (β)) for k = 0, . . . , ℓp − 1. First, those vertices are all distinct and the
order of the tuple (α,β) under Dp is ℓp. Also, it is clear that these vertices are all to be found at
level k. Moreover, we will show that any edge starting at one vertex of the form (3.2.1) at level k
ends at a vertex at level k+1 of the same form. Thus the induced subgraph of Gp(α,β) consisting
of these vertices (and, possibly, (α,β)) contains all edges, and thus agrees with Gp(α,β).

Without loss of generality, let us consider the vertex (α,β) and another vertex (α′,β′) of
the form (3.2.1) at the same level 0. Then each entry of α′,β′ differs from α,β by either 0 or
1. We consider one local exponent r ∈ Sp(α,β) and take r′ ∈ Sp(α

′,β′) with r − r′ ∈ {0, 1}. If
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r = 0, we pick r′ = 0 as well. Otherwise, we note that the exponent r′ exists, as r is of the form
1− βj mod p, and we can pick β′

j ∈ β′ differing from βj by at most 1 to obtain r′ = 1− β′
j . It is

left to show that the condition on the valuation of h(α,β; r) is fulfilled if and only if it is fulfilled
for h(α′,β′; r′). According to Lemma 3.1.10, we have

vp
(
h(α′,β′; r′)

)
=

∞∑
i=0

V ′
({

r′

pi

}
0
, pi
)
,

where V ′ is the function defined in Equation (3.1.2) for the parameters α′,β′. By Lemma 3.1.12.(i)
we now have for i > 1 that

V ′
({

r′

pi

}
0
, pi
)
= 0,

since r′/pi < 1/p < 1/2d. For i = 1, we observe that r′

p =
R(β′

j ,p)

p + 1
p with 1

p <
1
2d . Thus, by

Lemma 3.1.12.(ii), we obtain

V ′
({

r′

pi

}
0
, p
)
= M′(β′

j∆,∆),

where M′ is defined as in Equation (3.1.1) for the parameters α′,β′. Similarly, we obtain

V
({

r′

pi

}
0
, p
)
= M(βj∆,∆).

As the parameters α,β and α′,β′ differ by integers and there are no integer differences between
the parameters α and β, or between α′ and β′, the values M(βj∆,∆) and M′(β′

j∆,∆) agree,

and thus the p-adic valuations of h(α′,β′; r′) and h(α,β; r) are the same as well.
We finally show that Dp,r′(α

′,β′) = Dp,r(α,β). First we note that Dp(γ) = Dp(γ + 1) for all
γ ∈ Z(p) if p does not divide γ. By assumption p > 2d, and αi, βj ∈ [0, 2], so Dp(αi) = Dp(α

′
i)

and Dp(βj) = Dp(β
′
j) for all i, j. Last one checks that (αi)r ∈ pZ(p) if and only if (α′

i)r′ ∈ pZ(p)

and (βj)r ∈ pZ(p) if and only if (β′
j)r′ ∈ pZ(p) for all j.

Indeed, (αi)r ∈ pZ(p) if and only if αi mod p ∈ {0, p−r+1, . . . , p−1}.We distinguish between
the four possible combinations of the cases r = r′ or r = r′ + 1 and αi = α′

i or αi = α′
i − 1. The

only problems arise if αi + 1 ≡ p− r + 1 (mod p) or αi ≡ 0 (mod p). In the first case, writing
αi = a/d, βj = b/d with a, b ∈ [0, d − 1], this equation is equivalent to a − b ≡ −d (mod p), a
contradiction. Similarly, the second case can be discarded.

All what precedes concludes the proof of part (1). Further, we notice that Dp(α) = Dp(ᾱ) and
Dp(β) = Dp(β̄) (see Lemma 3.2.3.(1)) and so the cardinalities of Sp(α,β) and Sp(ᾱ, β̄) agree, as
the function M only depends on α mod Z and β mod Z. Also, it is clear that (ᾱ, β̄) ∈ G(α,β),
by following the edges corresponding to r = 0 in Sp(D

k
p(α),D

k
p(β)) for all k. In combination

with what was said before, this shows (2).
By part (2) it suffices to prove claim (3) for α,β between 0 and 1, which we will assume without

loss of generality. We claim that whether r = 1− βj mod p is in Sp(α,β) only depends on the
congruence class of p mod d. Indeed, choose ∆ with ∆p ≡ 1 (mod d). We have vp(h(α,β; r)) =
M(βj(r)∆,∆) by a combination of Lemmata 3.1.10 and 3.1.12. Here the right-hand side only
depends on p mod d. Also Dp(α), Dp(β) and the value of ℓp only depend on the congruence
class of p mod d. Thus, the number of vertices on each level and the number of levels is fixed
for each congruence class, according to part (1). Also, by (1), all edges between vertices of two
consecutive levels, exist in Gp(α,β). Thus the claim follows.

We finally prove (4). We have seen in the proof of part (1) that the width at level k is equal
to the cardinality of Sp(D

k−1
p (α),Dk−1

p (β)). From the definition of M (see Equation (3.1.1)), we
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find that this quantity equals the number of βj such that M(∆kβj ,∆
k) = 0. This proves the

first statement.
By Theorem 3.1.3 a hypergeometric function can be reduced modulo p, if and only if it

satisfies Christol’s interlacing condition for all λ ∈ ⟨p < modd⟩ = ⟨∆ mod d⟩. According to
Equation (3.0.3), a basis of solutions at 0 of H(α,β)y = 0 is given monomial multiples of
F(j) := nFn−1(α(j),β(j);x), where α(j) = α+1−βj and β(j) = β+1−βj . Let M(j) denote the
function M for the sets of parameters α(j),β(j). We have M(j)(·, λ) = M(·, λ)−M(λβj , λ). The
solution F(j) can be reduced modulo p if M(j)(·, λ) is always non-negative for all λ ∈ ⟨p mod d⟩.
As M(·, λ) is always non-negative for all λ, but assumes the value 0, this can only be the case if
M(λβj , λ) = 0. So the number of solutions that can be reduced modulo p is less than the number
of bj such that M(λβj , λ

k) = 0 for all λ ∈ ⟨p mod p⟩, and the claim follows.

3.2.3 Finding algebraic relations

We now want to find relations between several reductions of hypergeometric functions modulo a
fixed prime number p and combine them to obtain annihilating polynomials for the reduction of
a single hypergeometric function. We recall that we have determined in Theorem 3.1.3 the set of
prime numbers for which a hypergeometric function can be reduced.

In the language of the hypergeometric relation graph Gp(α,β) introduced above, a modified
version of Lemma 8.1 of [Var24], which we will need, reads as follows.

Proposition 3.2.6. Let v = (α,β) ∈ Vp. If p does not divide any of the numerators of the
elements of Dp(α) ∪Dp(β) and if nFn−1 (v;x) can be reduced modulo p, then

nFn−1 (v;x) ≡
∑

v
e−→v′

Q(e) · nFn−1 (v
′;x)

p
(mod p).

Proof. According to Theorem 3.1.17, the polynomials

ft(x) =

kt−1∑
k=t

h(v; k)p−vp(h(v;t))xk

with t ∈ Tp(α,β) form a basis of solutions of H(v) over Fp((x
p)). Since nFn−1 (v;x) is a solution

that can be reduced modulo p, there exist gt ∈ Fp((x)) such that

nFn−1 (v;x) ≡
∑

t∈Tp(α,β)

ft(x) · gt(xp) (mod p).

We recall that, for r ∈ {0, . . . , p−1}, we have introduce the section operator

σr : Fp[[x]] → Fp[[x]],

∞∑
n=0

anx
n 7→

∞∑
n=0

apn+rx
n.

Applying σt to the previous equality, we obtain

σt
(
nFn−1 (v;x)

)
≡ h̃(v; t) · gt(x) (mod p),

where, by definition, h̃(v; t) = h(v; t) p−vp(h(v;t)) ∈ Z×
(p). Besides, it follows from [Var24,

Lemma 8.7.(5)] that, for all t ∈ Tp(v),

σt
(
nFn−1 (v;x)

)
≡ h(v; t) · nFn−1 (Dp,t(v);x) (mod p).
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Comparing these congruences, we find that gt(x) = 0 whenever h(v; t) ≡ 0 (mod p), i.e., t ∈
Tp(v) \ Sp(v) and gt(x) = nFn−1 (Dp,t(v);x) otherwise. For t ∈ Sp(v), we have Q(v → Dp,t(v)) =
ft and the proposition follows.

Remark 3.2.7. Proposition 3.2.6 is connected to the notion of Frobenius preimages we discussed
in Subsection 2.3.3. Precisely, a theorem of Kedlaya [Ked22, Theorem 4.1.2] (which is in fact
attributed to Dwork in loc. cit.) indicates that the hypergeometric equation H(Dp(α),Dp(β))
is the preimage by Frobenius of H(α,β). The relation of Proposition 3.2.6 can be seen as an
incarnation modulo p of this property.

Proposition 3.2.6 provides a large set of algebraic relations between hypergeometric series in
positive characteristic. We will now combine them in order to find an annihilating polynomial for

nFn−1 (α,β;x).

Theorem 3.2.8. Let (α,β) ∈ Vp. If p > 2d ·max{|αi|+ 1, |βj |+ 1} and nFn−1 (α,β;x) can be
reduced modulo p then there exists a relation of the form

A0(x)nFn−1 (α,β;x) + · · ·+Aw(x)nFn−1 (α,β;x)
qw ≡ 0 (mod p),

where q = pℓp(α,β), w is the width of the graph Gp(α,β) and the Ai(x) are in Fq[x] and do not
all vanish.

Proof. We use the theory of Frobenius modules (see Definition 2.3.2). We define

M :=
⊕

v∈Gp(α,β)

Fp(x) ·mv,

where the notation means that the sum runs over the set of vertices v of Gp(α,β). We then turn
M into an object of the category ModpFp(x)

by setting

φM (mv) =
∑

v′ e−→v

Q(e) ·mv′ .

To it, is attached the Fp-linear representation V(M) of Gal(Fp(x)
sep/Fp(x)) defined by For-

mula (2.3.3). A straightforward computation shows that V(M) consists of families (fv)v∈Gp(α,β)

of elements of Fp(x)
sep satisfying the equations

fv =
∑

v
e−→v′

Q(e) · fpv′ .

In particular, Proposition 3.2.6 shows that it contains the family
(
nFn−1(v;x) mod p

)
v∈Gp(α,β)

.

On the other hand, M admits a canonical decomposition corresponding to the level partition
of the graph Gp(α,β), namely we have

M =M0 ⊕M1 ⊕ · · · ⊕Mℓp(α,β)−1,

where the summand Mk corresponds to the vertices of level k. The fact that an edge in Gp(α,β)
connects a vertex of level k to a vertex of level k+1 implies that φM maps Mk+1 to Mk. It follows

that each Mk is stable by the composite φ
ℓp(α,β)
M , which thus defines a structure of q-Frobenius

module on this space for q = pℓp(α,β).
If Gp(α,β)0 denote the set of vertices of Gp(α,β) of level 0, V(M0) is a finite dimensional

Fq-representation of Gal(Fq(x)
sep/Fq(x)) and we have an inclusion

V(M0) ⊆
(
Q(x)sep

)Gp(α,β)0
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commuting with the Galois action. Moreover V(M0) contains a vector whose (α,β)-coordinate
is nFn−1 (α,β;x) mod p. Let then

ϖ :
(
Q(x)sep

)Gp(α,β)0 → Q(x)sep

denote the projection on the (α,β)-coordinate and V be the image of V
(
M0

)
under ϖ. Clearly

V is finite dimensional over Fq, it is stable by the action of Gal(Fq(x)
sep/Fq(x)) and it con-

tains nFn−1 (α,β;x) mod p. These properties permits to build an annihilating polynomial for

nFn−1 (α,β;x) mod p, namely

Z(Y ) :=
∏
y∈V

(Y − y).

The stability by the Galois action ensures that Z(Y ) has coefficients in Fq(x). Moreover, the fact
that V is a Fq-linear vector space implies that Z(Y ) is a q-linearized polynomial, i.e., it has the
shape

Z(Y ) = c0Y + c1Y
q + · · ·+ csY

qs (ci ∈ Fq(x)).

By comparing degrees, we find that s is the dimension of V over Fq.
It then only remains to show that s ≤ w. For this, we recall that we have introduced in

Definition 2.3.7 the étale part of a Frobenius module. Applying Theorem 2.3.5 and Lemma 2.3.8,
we get

s = dimFq
V ≤ dimFq

V(M0) = dimFq
V
(
M ét

0

)
= dimQ(x)M

ét
0 .

On the other hand, we observe that φM induces a map M ét
k+1 →M ét

k . We need to be careful that
it is not linear but we can actually make it linear by twisting the domain, i.e., we consider

ψk : Fq(x)⊗φ,Fq(x) M
ét
k+1 −→ M ét

k

λ⊗m 7→ λφM (m)

which is now Fq(x)-linear. Furthermore, the composite of the ψk (correctly twisted) is the

linearization of φ
ℓp(α,β)
M acting on M ét

0 and hence is an isomorphism by étaleness. We conclude
that each ψk is itself an isomorphism, which finally leaves up with the inequality

dimFq(x)M
ét
0 = mink dimFq(x)M

ét
k .

Let wk be the width of level k of Gp(α,β). Under our assumptions on p, it follows from
Proposition 3.2.5 that

dimFq(x)M
ét
k ≤ dimFq(x)Mk = wk

whenever k > 0. This estimation also holds for k = 0 if the vertex (α,β) survives in Gp(ᾱ, β̄).
On the contrary, if it does not, Proposition 3.2.5 again ensures that there is no edge in Gp(α,β)
ending at (α,β). Consequently, the corresponding vector m(α,β) cannot be in M

ét
0 and we deduce

dimFq(x)M
ét
0 ≤ dimFq(x)M0 − 1 = w0.

In all cases, we thus have dimFq(x)M
ét
k ≤ wk, which finally implies that s ≤ mink wk = w as

desired.
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3.2.4 Approaching Galois groups

Our objective is now to reinterpret the previous results along the lines of Conjecture 2.2.6. For
this, we need to exhibit a number field whose residue fields are somehow related to the values
ℓp(α,β).

In all what follows, our number fields will all be defined as subfields of the field of complex
numbers C. For a positive integer d, we set ζd = exp(2iπ/d) ∈ C; it is a primitive d-th root of
unity and it generates the cyclotomic field Q(ζd). We recall that Q(ζd) is a Galois extension of Q
and that its Galois group is canonically isomorphic to (Z/dZ)×: an element λ ∈ (Z/dZ)× acts
on Q(ζd) by ζd 7→ ζλd . In particular, we notice that the element −1 ∈ (Z/dZ)× acts as complex
conjugation.

As before, we let d be the smallest common denominator of all the parameters α and β.
Further we define the group

D(α,β) :=
{
λ ∈ (Z/dZ)× : λ·α ≡ α (mod Z) and λ·β ≡ β (mod Z) as sets

}
.

We can map D(α,β) to a product of symmetric groups. Precisely, let S(α) (resp. S(β)) be
the group of bijections of α (resp. β) viewed as a multiset. We then have a group morphism
σ : D(α,β) → S(α)×S(β) that takes λ to the multiplication by λ.

Lemma 3.2.9. The morphism σ is injective.

Proof. We write αi =
ai

d , βi =
bi
d . By definition of d, we have gcd(a1, . . . , an, b1, . . . , bn−1, d) = 1

as otherwise the fractions ai

d and bi
d could all be simplified by a common factor, which is excluded.

By Bézout’s theorem, there exist integers u1, . . . , un, v1, . . . , vn−1, w such that

u1a1 + · · ·+ unan + v1b1 + · · ·+ vn−1bn−1 + wd = 1.

We now assume that we are given λ, µ ∈ D(α,β) such that σ(λ) = σ(µ). Then, following the
definition, we find that λai ≡ µai (mod d) and λbi ≡ µbi (mod d) for all i. Weighting these
congruences with the coefficients ui and vi and summing them, we get

λ · (u1a1 + · · ·+ unan + v1b1 + · · ·+ vn−1bn−1)

≡ µ · (u1a1 + · · ·+ unan + v1b1 + · · ·+ vn−1bn−1) (mod d)

which finally reduces to λ ≡ µ (mod d).

Definition 3.2.10. We define K(α,β) as the subextension of Q(ζd) corresponding to D(α,β)
via Galois correspondence.

In concrete terms, K(α,β) := Q(ζd)
D(α,β). The field K(α,β) is undoubtedly the number

field we are looking for, as we shall demonstrate in the sequel. First of all, we observe that it is
closely related to the Galois group of the hypergeometric differential equation in characteristic
zero. Indeed, it is the subfield generated by the entries of the monodromy matrices exhibited
in Theorem 3.1.9 and we know that those matrices generate the differential Galois group as an
algebraic group.

Now, we make the connection between the field K(α,β) and the numbers ℓp(α,β), which
will eventually relate K(α,β) to the Galois groups of the reduction of the hypergeometric series

nFn−1 (α,β;x) modulo the primes.

Proposition 3.2.11. Let p be a prime number which does not divide d, and let p be a prime in
K(α,β) above p. Then the residue field of K(α,β) at p has degree ℓp(α,β) over Fp.
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Proof. Throughout the proof, we omit the parameter (α,β) in the notation and simply write K
and ℓp for K(α,β) and ℓp(α,β) respectively. The assumption on p implies that p is not ramified
in the extension Q(ζd)/Q. Let q be a prime of Q(ζd) above p and write kp (resp. kq) for the
residue field of K at p (resp. of Q(ζd) at q). The Galois group of the extension kq/Fp is the
subgroup of (Z/dZ)× generated by p; we call it P . Since K is defined as the fixed subfield by D,
we deduce that kp is the subfield of kq fixed by P ∩D. Thus

Gal(kp/Fp) = P/(D ∩ P ).

Besides the cardinality of P/(D ∩ P ) is the smallest positive integer e such that p−e ∈ D. The
latter condition is equivalent to the statement “De(α) = α and De(β) = β” given that, according
to Lemma 3.2.1.(2), the Dwork map acts by division by p on Z(p)/Z. Comparing with the
definition of ℓp, we find that P/(D ∩ P ) has cardinality ℓp, which concludes the proof.

Theorem 3.2.12. Let p be a prime number with p > 2d ·max{|αi|+ 1, |βj |+ 1} and let p be a
prime in K(α,β) above p. Then

Gal
(
nFn−1 (α,β;x)

∣∣ kp(x)) ⊆ GLw(kp)

where w denotes the width of the graph Gp(α,β).

Proof. By Proposition 3.2.11, we have kp ≃ Fpℓp(α,β) . With this, the theorem follows from
Theorem 3.2.8.

We conclude this section by looking at some examples we already considered in Section 2.

Example 3.2.13. We recall the example from Subsection 2.1.4:

f(x) =

∞∑
n=0

(
2n

n

)3

· xn = 3F2

((
1
2 ,

1
2 ,

1
2

)
, (1, 1); 64x

)
.

Clearly ℓp(α,β) = 1 for all prime numbers p, as (Z/2Z)× is trivial. Moreover, as all bottom
parameters are equal to 1, it follows from Example 3.2.4 that the width w of the graph is 1, and
consequently, the Galois group Gal

(
f(x)

∣∣Fp(x)
)
embeds into F×

p . This agrees with the ad-hoc
arguments deployed in Subsection 2.1.4. However, we cannot provide a systematic argument
explaining the dichotomy of the Galois groups exhibited in Equation (2.1.5) here.

Example 3.2.14. We now consider the example f(x) = 3F2

((
1
9 ,

4
9 ,

5
9

)
,
(
1
3 , 1
)
;x
)
from Subsection

2.1.6. We have seen in Example 3.1.8 that f(x) is globally bounded. An easy computation shows
that ℓp(α,β) = ℓp = ord9(p) and these values are given by

ℓp =


1 if p ≡ 1 (mod 9)

2 if p ≡ 8 (mod 9)

3 if p ≡ 4, 7 (mod 9)

6 if p ≡ 2, 5 (mod 9)

We next discuss the width of the graphs Gp(α,β). In Figure 3, we see that, for λ = 2, 5, 8, we
have M(λkβj , λ

k) = 0 only for βj = 1 and, for λ = 1, 4, 7, the equation also holds for βj =
1
3 . We

have ⟨p mod 9⟩ ⊆ {1, 4, 7} if and only if p ≡ 1, 4, 7. This shows that the width w of the graph is 2
in the first case and 1 in the second case. By Theorem 3.2.12, we conclude that Gal(f(x) | Fq(x))
embeds into GLw(Fq), where q = pℓp(α,β). If we pass to Gal(f(x) | Fp(x)) we have additionally
the Frobenius morphism acting. Altogether, this shows that the Galois groups of f(x) over Fp(x)
embed into the semidirect products given in Equation (2.1.11). We cannot make any statement
about the index or precise nature of the subgroup with the techniques developed here, although
we conjecture equality for all prime numbers based on computer experiments.
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3.3 The case of Gaussian hypergeometric functions

We now consider the case of Gaussian hypergeometric functions with bottom parameter 1, that
are functions of the form 2F1 (α, (1);x) with α = (α1, α2) ∈ Q2 and β = (1). While this is
an extremely particular case of globally bounded D-finite functions, already for such function
an astonishing amount of nontrivial phenomena occur. We present strong evidence towards an
affirmative answer to Conjecture 2.2.6 (and its refinements) in this case.

Throughout this subsection, the letter p refers to a prime number which is coprime with d.
For simplicity, we will often omit the parameter (α,β) in the notation when no confusion can
occur; for example, we shall simply write ℓp for ℓp(α,β) and similarly, we set D := D(α,β) and
K := K(α,β). By Lemma 3.2.9, the group D has cardinality at most 2, i.e., D = {1, λ} with
λ ∈ (Z/dZ)×, λ2 = 1. We also define ep := ℓp/2.

3.3.1 Estimating the Galois group

We know from Example 3.2.4 that, in our case of interest, the graph Gp(α,β) has the ρ-shape
drawn in Figure 6. Let (αk, (1)) denote the parameter corresponding to the vertex of level k in
the circle part, i.e., αk = Dk′

p (α) where k′ is large enough and congruent to k modulo ℓp. Let also
Hk(x) denote the reduction modulo p of the hypergeometric series attached to the parameters
(αk, (1)). Similarly we define Bk(x) as the truncation at xp of Hk(x) mod p; thus Bk(x) is a
polynomial of degree less than p with coefficients in Fp. Proposition 3.2.6 ensures that

Hk(x) ≡ Bk(x) ·Hp
k+1(x). (3.3.1)

Combining these equations, we get the relation H0(x) = A(x) ·H0(x)
q where q = pℓp and

A(x) = B0(x) ·B1(x)
p · · ·Bℓp−1(x)

pℓp−1

. (3.3.2)

Similarly, we find that there exist a polynomial Ã(x) ∈ Fq[x] and a nonnegative integer m such

that 2F1 (α, (1);x) = Ã(x)H0(x)
qm . We observe moreover that the relation

2F1 (α, (1);x) ≡ Ã(x)H0(x)
qm = Ã(x) ·A(x)1+q+···+qm−1

H0(x) (mod p)

indicates that the functions 2F1 (α, (1);x) and H0(x) generate the same extension over kp(x). In
other words, we can assume without loss of generality that the parameters α1 and α2 are both in
the interval (0, 1], i.e., H0(x) = 2F1 (α, (1);x) mod p.

Besides, if α1 or α2 is equal to 1, the hypergeometric series 2F1 (α, (1);x) is equal to (1−x)−α

(where α is the value of the other parameter), a case we already covered in Subsection 2.1.1.
Therefore, from now on, we suppose α1, α2 ∈ (0, 1).

The Galois groups we are interested in can be computed using Kummer theory.

Proposition 3.3.1. Let p be a prime of K above p. The Galois group Gal
(
2F1 (α, (1);x) | kp(x)

)
naturally embeds in k×p and hence is a cyclic group. Moreover, its order is

q−1

gcd(r, q−1)

where r denotes the largest integer such that A(x) is r-th power in kp(x).

Proof. By what precedes, we know that H0(x) is a (q−1)-th root of the polynomial A(x) ∈
Fp[x] ⊆ kp(x). Since kp contains all the (q−1)-th roots of unity, Kummer’s theory tells us that
Gal(H0(x) | kp(x)) embeds into µq−1(kp(x)) = k×p and that its order is q−1

gcd(r,q−1) .
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After Proposition 3.3.1, we are led to determine when A(x) is a perfect power. In general,
we do not expect this to occur, although it could happen “by accident.” There is, however,
one important case where this happens systematically, namely in the case when ℓp is even and
−pep ∈ D.

In all what follows, if γ ∈ Z(p), we let γ(0), γ(1), . . . denote the “digits” of the p-adic integer

(−γ), i.e., γ(k) ∈ {0, . . . , p−1} for all k and the following expansion

−γ = γ(0) + pγ(1) + p2γ(2) + · · ·

holds in the ring of p-adic integers. When γ = (γ1, γ2), we also let B(γ;x) ∈ Fp[x] be the
truncation at xp of 2F1 (γ, (1);x) mod p. By definition, we thus have Bk(x) = B(αk;x).

Lemma 3.3.2. Let γ = (γ1, γ2) ∈ (Z(p) ∩ (0, 1))2. Then

degB(γ;x) = min(γ
(0)
1 , γ

(0)
2 ),

degB(1− γ;x) = p− 1−max(γ
(0)
1 , γ

(0)
2 ).

Moreover, we have the relation

B(γ;x) = (1− x)γ
(0)
1 +γ

(0)
2 −(p−1) ·B(1− γ;x). (3.3.3)

Proof. Set δ = min(γ
(0)
1 , γ

(0)
2 ). By definition, the coefficient of xr for r < p in B(γ;x) is (γ1)r(γ2)r

(r!)2 .

Hence it vanishes modulo p if and only if the numerator does. When r > δ, the numerator
contains the factor (γ1 + δ) · (γ2 + δ), and so it vanishes modulo p. On the contrary, when r = δ,
we have

(γ1)r(γ2)r = γ1(γ1 + 1) · · · (γ1 + δ − 1) · γ2(γ2 + 1) · · · (γ2 + δ − 1)·,

and, again by definition of δ, none of the above factors vanish. We conclude that B(γ;x) has
degree δ, as claimed. The second statement on the degree of B(1− γ;x) is proved similarly.

Thanks to Euler’s transformation, we know that

2F1 (γ, (1);x) = (1− x)1−γ1−γ2 · 2F1 (1− γ, (1);x) .

We now note that the exponent 1 − γ1 − γ2 is congruent to γ
(0)
1 + γ

(0)
2 − (p − 1) modulo p.

Therefore,

B(γ;x) ≡ (1− x)γ
(0)
1 +γ

(0)
2 −(p−1) ·B(1− γ;x) (mod xp).

If γ
(0)
1 + γ

(0)
2 ≥ p− 1, both sides are polynomials of degree at most p, and we can conclude that

they are indeed equal. On the contrary, when γ
(0)
1 −γ(0)2 ≤ p−1, we rewrite the above congruence

as
B(1− γ;x) ≡ (1− x)(p−1)−γ

(0)
1 −γ

(0)
2 ·B(γ;x) (mod xp)

and we conclude similarly.

We introduce one more numerical invariant attached to the situation; it is the integer m
defined by

m :=
d

gcd(d, a1+a2)

where we have written αi = ai/d for i = 1, 2. We note that m is also the denominator of the
irreducible fraction representing α1 + α2.
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Proposition 3.3.3. We assume that ℓp is even and that −pep ∈ D. Then

A(x) = (1− x)(1+pep )(1−α1−α2)
(
BepB

p
ep+1 · · ·B

pep−1

ℓp−1

)1+pep

.

It is a perfect power with exponent
1 + pep

m
.

Proof. We recall from Lemma 3.2.1.(2) that the Dwork operator Dp acts by division by p on
Z(p)/Z. The assumption of the proposition then tells us that D

ep
p (α) ≡ −α (mod Z), which

implies more generally D
ep+k
p (α) ≡ −Dk

p(α) (mod Z) for all k. Since our parameters are all in

(0, 1), we deduce that D
ep+k
p (α) = 1−Dk

p(α). On the other hand, we recall from Lemma 3.2.1

that Dk
p(γ)

(0) = γ(k) for all k. Hence, Lemma 3.3.2 gives

Bk(x) = (1− x)α
(k)
1 +α

(k)
2 −(p−1)Bk+ep(x).

Coming back to the definition of A(x), we find

A(x) =

ℓp−1∏
k=0

Bk(x)
pk

=

ep−1∏
k=0

(1− x)p
k(α

(k)
1 +α

(k)
2 −(p−1))Bk+ep(x)

pk+pk+ep

= (1− x)v ·

(
ep−1∏
k=0

Bk+ep(x)
pk

)1+pep

,

where the exponent v is given by v =
∑ep−1

k=0 pkuk with uk = α
(k)
1 + α

(k)
2 − (p − 1). Now, we

remark that, for γ ∈ Z(p), we have

−(1− γ) = −1−
∞∑

m=0

pmγ(m) =

∞∑
m=0

pm(p− 1− γ(m)),

implying that (1 − γ)(m) = p − 1 − γ(m) for all m ∈ N. Applying this result with γ = Dk
p(αi)

(i ∈ {1, 2}) and remembering that D
ep+k
p (α) = 1 − Dk

p(α), we conclude that uep+k = −uk.
Weighting by pk and summing over k (and doing the computation in the ring of p-adic integers),
we find

∞∑
k=0

pkuk =

( ∞∑
k′=0

(−1)k
′
pepk

′

)
·

(
ep−1∑
k=0

pkuk

)
=

1

1 + pep

ep−1∑
k=0

pkuk.

On the other hand, coming back to the definition, we have

∞∑
k=0

pkuk =

∞∑
k=0

pk
(
α
(k)
1 + α

(k)
2 − (p− 1)

)
= 1− α1 − α2.

Hence, we conclude that v = (1 + pep) · (1 − α1 − α2) and the first part of the proposition is
proved.

We write α1 + α2 = a/m with a coprime with m. We thus have

v =
(1 + pep)(m− a)

m
.

Since m− a is coprime with m, we deduce that m divides 1 + pep and then that v is a multiple of
r := 1+pep

m . Given that (1 + pep) is also obviously a multiple of r, we conclude that A(x) is a r-th
power.
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As a conclusion, we have proved the following.

Corollary 3.3.4. Let p be a prime of K above p. The Galois group Gal(2F1 (α, (1);x) | kp(x))
embeds in k×p and hence is a cyclic group. Moreover, if ℓp is even and −pep ∈ D, its cardinality
divides (pep − 1) ·m

3.3.2 Uniformizing the Galois groups

We now aim at finding a common origin of the Galois groups given by Corollary 3.3.4 in the
terms of Conjecture 2.2.6. For this, we shall consider several subgroups of GL1(K) = K×. The
first one is µm(K), the group of m-th roots of unity in K. The following lemma ensures that K
contains all m-th roots of unity, meaning that µm(K) is a cyclic group of cardinality m.

Lemma 3.3.5. We have ζm ∈ K.

Proof. It follows immediately from the definition that m divides d. Hence ζm ∈ Q(ζd) and it is
enough to prove that ζm = ζλm for any λ ∈ D. Let λ ∈ D. By definition, the multiplication by λ
induces a permutation of {α1, α2} modulo Z. Thus

λ · (a1 + a2) ≡ a1 + a2 (mod d)

and we conclude that λ ≡ 1 (mod m). The lemma follows.

The second subgroup of GL1(K) that will play a major role in what follows is the group
GL1(K

+) where K+ := K ∩ R. Since the complex conjugacy is represented by the element
−1 ∈ (Z/dZ)×, we deduce that K+ is the subfield of Q(ζd) cutted out by the subgroup

D+ := D · {±1} ⊆ (Z/dZ)×.

Definition 3.3.6. We define the subgroup G of GL1(K) by

G :=


GL1(K) if K = K+

GL1(K
+) · ⟨ξ − ξ̄⟩ if K ̸= K+ and m = 2

GL1(K
+) · ⟨1 + ζm⟩ if K ̸= K+ and m ̸= 2

where ξ is an element of K \K+ and ξ̄ is its complex conjugate.

Remark 3.3.7. The reason why the definition is slightly different when m = 2 comes simply from
the fact that 1 + ζm vanishes in this case. We notice moreover that, as soon as ξ ∈ K \K+,
the element ξ − ξ̄ is a nonzero real multiple of i ∈ C. The group GL1(K

+) · ⟨ξ − ξ̄⟩ is then the
subgroup

(K× ∩ R) ⊔ (K× ∩ Ri) ⊆ K×.

In particular, it does not depend on the choice of ξ, and so Definition 3.3.6 is not ambiguous.

We are going to prove that the group G fulfills the requirements of Conjecture 2.2.6. We start
by a lemma that reformulates the condition of Corollary 3.3.4 in more abstract terms.

Lemma 3.3.8. Let p be a prime in K above p and let kp (resp. k+p ) denote the residue field of
K (resp. K+) at p. The extension kp/k

+
p is nontrivial if and only if ℓp is even and −pep ∈ D.

Moreover, when this occurs, it has degree 2.
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Proof. Let P denote the subgroup of (Z/dZ)× generated by p. We know from the proof of
Proposition 3.2.11 that Gal(kp/Fp) = P/(D ∩ P ), and similarly one proves that Gal(k+p /Fp) =
P/(D+ ∩ P ). Hence the extension kp/k

+
p is trivial if and only if

D ∩ P = D+ ∩ P. (3.3.4)

If −1 ∈ D, we have D = D+ and the condition (3.3.4) is obviously satisfied. On the other hand,
still assuming that −1 ∈ D, the condition −pep ∈ D is equivalent to pep ∈ D, which cannot be
true by minimality of ℓp. The equivalence stated in the lemma is then proved in this case.

We now assume that −1 ̸∈ D. Then D+ is the disjoint union of D and (−D), from what we
deduce that the condition (3.3.4) is equivalent to the fact that P does not meet (−D). Clearly, if
−pep ∈ D, then P meets (−D). Conversely, let us assume that P ∩ (−D) = ∅, i.e., that there
exists an exponent e ∈ N such that −pe ∈ D. Then p2e ∈ D and it follows that 2e needs to be a
multiple of ℓp: there exists an integer n such that 2e = nℓp. Necessarily n has to be odd because
otherwise, we would deduce that ℓp divides e and, consequently, that pe ∈ D; this cannot be
true given that −pe ∈ D and −1 ̸∈ D by assumption. It follows that ℓp is even. Now, writing

n = 2n′ + 1, we get pe = pn
′ℓp+ep ≡ pep (mod d) and so −pep ∈ D.

Finally, the fact that kp/k
+
p has degree at most 2 follows from the fact that D ∩ P has index

at most 2 in D+ ∩ P .

Following Conjecture 2.2.6, for any place p of K, we set

Gp := image
(
G ∩GL1(O(p)) −→ GL1(kp)

)
(3.3.5)

where O(p) denotes the localization of the ring of integers of K at p and kp = O(p)/pO(p) is the
residue field.

Proposition 3.3.9. Let p be a prime ideal above p. Then Gp is equal to GL1(kp) if ℓp is odd or
−pep ̸∈ D; otherwise, it is its cyclic subgroup of order (pep − 1) ·m.

Proof. We only write the proof when m ̸= 2, the case m = 2 being treated in a similar fashion.
To start with, we observe that G contains µm(K), which follows from writing

ζm = (ζm + 1)2 · (ζm + ζ−1
m + 2)−1

and noticing that the second factor lies in GL1(K
+) since it is invariant under the transformation

ζm 7→ ζ−1
m . Therefore, we equally have G = GL1(K

+) ·H with H := µm(K) · ⟨1 + ζm⟩. We note
that the former equality also holds when K = K+ since G = GL1(K) in this case.

We now compute the intersection G ∩GL1(O(p)). Given that p is coprime with d, and hence
with m, Hensel’s lemma ensures that the morphism µm(K) → µm(kp) is an isomorphism. Thus
ζm, which is a generator of µm(K), reduces modulo p to a generator of µm(kp). Therefore 1+ ζm
does not vanish in kp. This shows that the group H sits inside GL1(O(p)) and, consequently, that

G ∩GL1(O(p)) = GL1(O+
(p)) ·H where O+

(p) is the localization at p of the ring of integers of K+.

Reducing modulo p, we finally find

Gp = GL1(k
+
p ) ·Hp

where Hp is the reduction of H modulo p.
When ℓp is odd or −pep ̸∈ D, Lemma 3.3.8 shows that kp = k+p and so Gp = GL1(kp) as

claimed.
We now consider the case where ℓp is even and −pep ∈ D. Applying Lemma 3.3.8 again, we find

that the cardinality of GL1(k
+
p ) is p

ep −1 and so the cardinality of the quotient GL1(kp)/GL1(k
+
p )
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is pep + 1. Moreover, both of these groups are cyclic. We then reduced to prove that the image of
Hp in GL1(kp)/GL1(k

+
p ) has cardinality m. For this, we observe that the kernel of µm(kp) →

GL1(kp)/GL1(k
+
p ) is µm(k+p ), which is a cyclic group of order gcd(m, pep−1) = gcd(m, 2) because

m divides pep + 1.
By what precedes, it is enough to show that the order of 1 + ζm in the quotient group

GL1(kp)/GL1(k
+
p )µm(kp) is 1 when m is odd and 2 when m is even. For this, we first notice that

(ζm + 1)2 = ζm · (ζm + ζ−1
m + 2) ∈ GL1(k

+
p )µm(kp)

since the first factor is in µm(kp) and the second factor lies is k+p . Hence the order of 1 + ζm is 1
or 2. Now, we observe that 1 + ζm lies in GL1(k

+
p )µm(kp) if and only if there exists an integer

a such that ζam(1 + ζm) is invariant by the transformation ζm 7→ ζ−1
m . After simplification, this

further reduces to ζ2a+1
m = 1. When m is odd, such an element a obviously exists (we can take

a = m−1
2 ). On the contrary, when m is even, it does not exist because ζm has order m in GL1(k

+
p )

and m cannot divide the odd number 2a+ 1.

Combining Proposition 3.3.9 with Corollary 3.3.4, we get the first part of Theorem 1.2 of the
introduction.

3.3.3 Approaching the Galois group from below

Up until now, we have only bounded the Galois groups of reductions of hypergeometric series
from above. We now develop also bounds from below, that will eventually give a complete proof
of Theorem 1.2.

We recall from Proposition 3.3.1 that the order of the Galois group of Gal(2F1 (α, 1;x) | kp(x))
with α = (α1, α2) is given by

q−1

gcd(r, q−1)
,

where q = pℓp and r is the largest integer such that the polynomials A(x) introduced in Equa-
tion (3.3.2), is a perfect r-th power. To estimate r, we rely on the fact that r must divide the
valuation of A(x) at any point, and also its degree (i.e., its valuation at infinity).

Valuation at singular points. The degree, which we denote by ν∞, has been already essentially
computed in Subsection 3.3.1. Precisely, we recall from there that Bk(x) is defined as the
truncation at xp of 2F1

(
Dk

p(α), 1;x
)
mod p. Then, Lemma 3.3.2 shows that Bk(x) has degree

min(α
(k)
1 , α

(k)
2 ), where α

(k)
i denotes the k-th digit in the p-adic expansion of −αi for i ∈ {1, 2}.

Therefore

ν∞ =

ℓp−1∑
k=0

min(α
(k)
1 , α

(k)
2 ) · pk. (3.3.6)

The valuation at 1 of A(x) can be computed similarly. As in Subsection 3.3.1, we write B(γ;x)
for the truncation of 2F1 (γ, 1;x) mod p at xp.

Lemma 3.3.10. Let γ = (γ1, γ2) ∈ (Z(p) ∩ (0, 1))2. Then

val1
(
B(γ;x)

)
= max

(
0, γ

(0)
1 + γ

(0)
2 − p+ 1

)
where val1 denotes the valuation at 1.
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Proof. We know from Lemma 3.3.2 that

B(γ;x) = (1− x)γ
(0)
1 +γ

(0)
2 −p+1 ·B(1− γ;x).

Without loss of generality, we assume that γ
(0)
1 + γ

(0)
2 ≥ p− 1; otherwise we exchange the roles of

γ and 1−γ. The local exponents at 1 of H(γ, (1)) mod p are 0 and γ
(0)
1 + γ

(0)
2 − p− 1, while that

of H(1− γ, 1) mod p are 0 and −1− (γ
(0)
1 + γ

(0)
2 ); besides B(γ;x) are B(1− γ;x) are solutions

of the associated differential equations respectively. The only option to conceal these conditions
is to have

val1
(
B(1− γ;x)

)
≡ −1−

(
γ
(0)
1 + γ

(0)
2

)
(mod p)

val1
(
B(γ;x)

)
≡ γ

(0)
1 + γ

(0)
2 − p+ 1 + val1

(
B(1− γ;x)

)
≡ 0 (mod p).

Since, moreover, val1(B(γ;x)) ≤ degB(γ;x) < p, we conclude that val1(B(γ;x)) = 0.

Applying the previous lemma with γ = Dk
p(α) for k varying between 0 and ℓp−1, we find

ν1 := val1
(
A(x)

)
=

ℓp−1∑
k=0

max
(
0, α

(k)
1 + α

(k)
2 − p+ 1

)
· pk. (3.3.7)

Apart from the singular points 1 and ∞, the last singular point of the hypergeometric
differential equation is 0. However, the valuation at 0 of A(x) is clearly 0, by definition so this
does not provide any further information in our quest to determine r.

Valuation at ordinary points. Equation (3.3.1) ensures that we can apply Lemma 2.1.3 to
B(γ;x) and conclude that each ξ ∈ F̄p different from 1 is at most a simple root of each of the
polynomials Bk(x). Then, each root of A(x) different from 1 has multiplicity

ε0 + ε1 · p+ · · ·+ εℓp−1p
ℓp−1 (3.3.8)

for some εi ∈ {0, 1}.
Assuming now, that A(x) is a perfect r-th power, we know that for each of its roots, the

expression (3.3.8) must be divisible by r. We use this information is a very special case. For each
k, we let bk be the number of distinct roots of Bk(x) different from 1, and we order them by size:

bj1 < · · · < bjℓ .

We underline that the values of the bk can obviously be deduced from the degrees of Bk(x) and the
multiplicity of 1 as a root of each of them, two quantities we have alreadly computed previously.
We take c maximal such that bj1 + · · ·+ bjc < bjℓ . Then there exists a root ξ0 of Bjℓ(x), that is
not a root of any of the polynomials Bj1(x), . . . , Bjc(x). Set J := {jk+1, . . . , jℓ−1}, so that the
multiplicity of ξ0 as a root of A(x) is given by

νJ′ := pjℓ +
∑
j∈J′

pj

for some subset J ′ ⊆ J .
Putting all the constraints together, we conclude that r has to be a divisor of

gJ′ := gcd
(
ν∞, ν1, νJ′ , pℓp − 1

)
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for some J ′ ⊆ J . Consequently, the index of Gal(2F1 (α, (1);x) | kp(x)) in the conjectured group
Gp of Proposition 3.3.9 is bounded from above by gJ′/h where

h :=

{
pep + 1 if ℓp is even and p−ep ∈ D

1 otherwise.

Of course, the set J ′ is a priori not known, but we can even bound the index by taking the
maximum (or the least common multiple) of all the previous quantities when J ′ varies.

Uniformity in p. To make statements about all primes simultaneously, we need to study

the behavior of g with respect to p. The key observation is that α
(k)
1 and α

(k)
2 depend only on

s := ⌊p/d⌋ and t := p mod d, as shown by the following lemma.

Lemma 3.3.11. Let γ ∈ Z(p) ∩ (0, 1) with denominator d, and let t ∈ {1, . . . , d−1} with
gcd(t, d) = 1. Then there exists a polynomial Γt(x) ∈ Z[x] of degree at most 1 such that, for all
positive integer s such that p = ds+ t is a prime number, Γt(s) is the unique representative of
(−γ) mod p in the interval [0, p).

Proof. We write p = ds+ t. We consider a Bézout relation ut+ vd = 1 with u, v ∈ Z and notice
that us− v ≡ − 1

d (mod p) for all s since

−d(us− v) ≡ ut+ vd = 1 (mod p).

If γ = a
d , we now define

Γt(x) := aux− av −
⌊au
d

⌋
(dx+ t).

Clearly, Γt(x) is a polynomial with integral coefficients of degree at most 1, and Γt(s) ≡ −γ
(mod p) for all s. Besides the constant coefficient of Γt(x) is in the range [0, d), while its linear
coefficient is in [0, t) given that

−1 < −γ = −av − au

d
t ≤ −av −

⌊au
d

⌋
t < −av −

(au
d

− 1
)
t = t− γ.

Therefore 0 ≤ Γt(s) < ds+ t = p for all s.

Applying Lemma 3.3.11 with γ = Dk
p(αi) (with i ∈ {1, 2}), we find that each α

(k)
i is a

polynomial of degree at most 1 in s (for each fixed congruence class t modulo d). Given that ℓp
also only depends on the congruence of p modulo d, we find that all the quantities ν∞, ν1, p

ℓp−1
and all νJ′ are polynomials in s as well. If the greatest common divisor of these polynomials
computed in Q[s] is equal to h for all J ′, we derive that the index of Gal(2F1 (α, (1);x) | kp(x))
in Gp is bounded independently of p, and we can even explicitly compute a bound by writing
down Bézout relations between these polynomials. In some cases, this bound is equal to 1, so
that we can conclude that Gal(2F1 (α, (1);x) | kp(x)) = Gp for all prime p which is congruent to
t modulo d.

Example 3.3.12. For any parameter α, and any prime number p for which ℓp = 1, we immediately
obtain from Lemma 2.1.3 that if A(x) = 2F1 (α, (1);x) mod p, xp is not of the form (x − 1)2d

for some d, then A(x) is not a perfect power and so Gal(2F1 (α, (1);x) | kp(x)) = F×
p for any

prime ideal p over p. This is one particular instance on our ideas used for zeroes of A(x) that
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ℓ −p ℓ
2 ∈ D? ν∞ ν1 lcm(νJ′) lcm(gJ′) h

p = 8s+ 1 1 - s 0 1 1 1
p = 8s+ 3 1 - s 0 1 1 1
p = 8s+ 5 2 no 8s2 + 10s+ 3 4s+ 3 8s+ 5 1 1
p = 8s+ 7 2 yes 8s2 + 12s+ 4 4s+ 4 64s2 + 88s+ 30 4s+ 4 4s+ 4

Table 1: Proof that for α = ( 18 ,
3
8 ) the Galois group is cyclic of order pℓp−1

h

are nonsingular points of the associated differential equation. For example, taking α = ( 12 ,
1
2 ) we

have seen the very same argument for hypergeometric function

2F1 (α, (1); 4x) =

∞∑
n=0

(
2n

n

)2

xn

in Subsection 2.1.3.

Example 3.3.13. Let us take α = ( 18 ,
3
8 ). Table 1 shows for each congruent class of p modulo d,

the values of ℓp, ν∞, ν1, the lcm of νJ′ for the relevant J ′ and the corresponding value for g. We
see that the last two columns agree, which proves that the actual Galois groups agree with the
conjectured ones.

Example 3.3.14. Let us now take α = ( 17 ,
3
7 ). In Table 2, we again investigate for all congruence

classes of p modulo 7 the implications on the size on the Galois groups. We display the ratio
lcm(gJ′)/h measuring the discrepancy between the expected size of the Galois group and the
bound we prove. The quotient is 1 if and only if we succeeded to prove that the Galois group
Gal(2F1 (α, (1);x) | kp(x)) is of index h in k×p . We also display gcd(ν∞, ν1, p

ℓ−1)/h to emphasize
the benefit of the computation of the νJ′ in finding bounds for the size.

ℓ −p ℓ
2 ∈ D? gcd(ν∞, ν1, p

ℓ − 1)/h lcm(gJ′)/h h

p = 7s+ 1 1 - s 1 1
p = 7s+ 2 3 - 4 2 1
p = 7s+ 3 6 yes 1 1 49s3 + 63s2 + 27s+ 4
p = 7s+ 4 3 - 5 1 1
p = 7s+ 5 6 yes 1 1 49s3 + 105s2 + 75s+ 18
p = 7s+ 6 2 yes 1 1 s+ 1

Table 2: For α = ( 17 ,
3
7 ) and prime numbers congruent to 2 modulo 7 the techniques presented

do not suffice to prove that Ap(x) is not a square.

Example 3.3.15. From the previous examples one might hope, that using our methods for any
set of parameters we are able to find a fixed bound, valid for all prime numbers, on the maximal
index of the Galois group in the cyclic group of order (pℓp − 1)/h. However, taking α = ( 1

15 ,
11
15 )

dashes this hope. Writing p = 15s+ t, for each value of t ∈ {2, 7, 8, 13, 14}, we find each time a
subset J ′ for which gJ′(α) is a nonconstant polynomials in s.

We have implemented the methods described in this chapter in SageMath2, to carry out the
necessary computations for the examples and to test the bounds given for small values of the

2The code is available at https://plmlab.math.cnrs.fr/caruso/gal-Dfin-modp
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common denominator of the parameters. Doing this, we showed that the equality

Gal(2F1 (α, (1);x) | kp(x)) = Gp

holds whenever d ∈ {2, 3, 4, 6, 8, 12, 24}, which completes the proof of Theorem 1.2 of the
introduction. Similarly, we also proved by computations that the index of Gal(2F1 (α, (1);x) |
kp(x)) in Gp is always at most 5 when d ≤ 12.
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France, 2004, 27–62, ex. url: https://eudml.org/doc/252133.

[Fur67] H. Furstenberg. “Algebraic functions over finite fields”. J. Algebra 7 (1967), pp. 271–
277. doi: 10.1016/0021-8693(67)90061-0.

[FY24] F. Fürnsinn and S. Yurkevich. “Algebraicity of Hypergeometric Functions with Arbi-
trary Parameters”. Bulletin of the London Mathematical Society (2024), blms.13103.
doi: 10.1112/blms.13103.

[Gal81] A. I. Galochkin. “Hypergeometric Siegel Functions and E-Functions”. Mathematical
Notes of the Academy of Sciences of the USSR 29.1 (1981), pp. 3–8. doi: 10.1007/
BF01142505.

[Ges82] I. Gessel. “Some congruences for Apéry numbers”. Journal of Number Theory 14.3
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(1986-1987), Exposé 4 (1986), pp. 1–27.

[Sal87] O. Salon. “Suites automatiques à multi-indices et algébricité”. C. R. Acad. Sci. Paris
Sér. I Math. 305 (1987), pp. 501–504.

[Sta80] R. Stanley. “Differentiably Finite Power Series”. European Journal of Combinatorics
1.2 (1980), pp. 175–188. doi: 10.1016/S0195-6698(80)80051-5.

[SW88] H. Sharif and C. F. Woodcock. “Algebraic functions over a field of positive character-
istic and Hadamard products”. J. London Math. Soc. (2) 37 (1988), pp. 395–403. doi:
10.1112/jlms/s2-37.3.395.

[Var21] D. Vargas-Montoya. “Algébricité modulo p, séries hypergéométriques et structures
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