
Journal de Théorie des Nombres
de Bordeaux 00 (XXXX), 000–000

Numerical stability of Euclide algorithm

over ultrametric fields

par Xavier Caruso

Résumé. Nous étudions le problème de la stabilité du calcul des
résultants et sous-résultants des polynômes définis sur des an-
neaux de valuation discrète complets (e.g. Zp ou k[[t]] où k est
un corps). Nous démontrons que les algorithmes de type Eu-
clide sont très instables en moyenne et, dans de nombreux cas,
nous expliquons comment les rendre stables sans dégrader la com-
plexité. Chemin faisant, nous déterminons la loi de la valuation
des sous-résultants de deux polynômes p-adiques aléatoires uni-
taires de même degré.

Abstract. We address the problem of the stability of the com-
putations of resultants and subresultants of polynomials defined
over complete discrete valuation rings (e.g. Zp or k[[t]] where k
is a field). We prove that Euclide-like algorithms are highly un-
stable on average and we explain, in many cases, how one can
stabilize them without sacrifying the complexity. On the way,
we completely determine the distribution of the valuation of the
subresultants of two random monic p-adic polynomials having the
same degree.

1. Introduction

As wonderfully illustrated by the success of Kedlaya-type counting points
algorithms [9], p-adic technics are gaining nowadays more and more popu-
larity in computer science, and more specifically in symbolic computation.
A crucial issue when dealing with p-adics is that of stability. Indeed, just
like real numbers, p-adic numbers are by nature infinite and thus need to
be truncated in order to fit in the memory of a computer. The level of
truncation is called the precision. Usual softwares implementing p-adics
(e.g. magma [5], pari [3], sagemath [11]) generally tracks the precision
as follows: an individual precision is attached to any p-adic variable and
this precision is updated after each basic arithmetic operation. This way of

1991 Mathematics Subject Classification. 11S99, 11Y99, 68W30.
Mots-clefs. Euclide algorithm, ultrametric precision, subresultants.

2 Xavier Caruso

Degree
Loss of precision (in number of significant digits)

Euclide algorithm expected

5 6.3 3.1

10 14.3 3.2

25 38.9 3.2

50 79.9 3.2

100 160.0 3.2

Figure 1. Average loss of precision when computing the
gcd of two random monic polynomial of fixed degree over
Z2.

tracking precision can be seen as the analogue of the arithmetic intervals
in the real setting. We refer to §2.1.2 for more details.

In the paper [6], the authors propose a new framework to control p-adic
precision. The aim of this paper is to illustrate the technics of loc. cit. on
the concrete example of computation of gcds and subresultants of p-adic
polynomials. There is actually a real need to do this due to the combination
of two reasons: on the one hand, computating gcds is a very basic operation
for which it cannot be acceptable to have important instability whereas, on
the other hand, easy experimentations show that all standard algorithms
for this task (e.g. extended Euclide’s algorithm) are very unstable. Figure
1 illustrates the instability of the classical extended Euclide’s algorithm (cf
Algorithm 1) when it is called on random inputs which are monic 2-adic
polynomials of fixed degree (see also Example 2.3). Looking at the last line,

Algorithm 1: Extended Euclide’s algorithm

Input : Two polynomials A,B ∈ Qp[X] (whose coefficients are
known at given precision)

Output: A triple D,U, V such that D = AU +BV = gcd(A,B)

1 S1 ← A; U1 ← 1; V1 ← 0

2 S2 ← B; U2 ← 0; V2 ← 1

3 k ← 2

4 while Sk 6= 0 do
5 Q,Sk+1 ← quotient and remainder in the Euclidean division of

Sk−1 by Sk
6 Uk+1 ← Uk−1 −QUk
7 Vk+1 ← Vk−1 −QVk
8 k ← k + 1

9 return Sk−1, Uk−1, Vk−1

Numerical stability of Euclide algorithm over ultrametric fields 3

we see that extended Euclide’s algorithm outputs the Bézout coefficients
of two monic 2-adic polynomials of degree 100 with an average loss of 160
significant digits by coefficient whereas a stable algorithm should only loose
3.2 digits on average. This “theoretical” loss is computed as the double of
the valuation of the resultant. Indeed Cramer-like formulae imply that
Bézout coefficients can be computed by performing a unique division by
the resultant, inducing then only the aforementioned loss of precision (see
§2.1.2, Eq. (2.8) for a full justification). Examining the table a bit more,
we observe that the “practical” loss of precision due to Euclide’s algorithm
seems to grow linearly with respect to the degree of the input polynomials
whereas the “theoretical” loss seems to be independant of it. In other
words, the instability of Euclide’s algorithm is becoming more and more
critical when the degree of the input increases.
Content of the paper. The aim of this article is twofold. We first provide
in §3 a theoretical study of the instability phenomenon described above
and give strong evidences that the loss of precision grows linearly with re-
spect to the degree of the input polynomials, as we observed empirically.
In doing so, we determine the distribution of the valuation of the subresul-
tants of random monic polynomials over Zp (cf Theorem 3.3). This is an
independant result which has its own interest.

Our second goal, which is carried out in §4, is to rub out these unexpected
losses of precision. Making slight changes to the standard subresultant
pseudo-remainder sequence algorithm and using in an essential way the
results of [6], we manage to design a stable algorithm for computing all
subresultants of two monic polynomials over Zp (satisfying an additional
assumption). This basically allows to stably compute gcds assuming that
the degree of the gcd is known in advance.
Notations. Figure 2 summerizes the main notations used in this paper. The
definitions of many of them will be recalled in §2.

2. The setting

The aim of this section is to introduce the setting we shall work in
throughout this paper (which is a bit more general than that considered in
the introduction).

2.1. Complete discrete valuation rings.

Definition 2.1. A discrete valuation ring (DVR for short) is a domain W
equipped with a map val : W → Z ∪ {+∞} — the so-called valuation —
satisfying the four axioms:

(1) val(x) = +∞ iff x = 0
(2) val(xy) = val(x) + val(y)
(3) val(x+ y) ≥ min(val(x), val(y))

4 Xavier Caruso

A — a commutative ring
W — a complete discrete valuation ring
π — a uniformizer of W
K — the fraction field of W
k — the residue field of W

A<n[X] — the free A-module consisting of polynomials
over A of degree < n

A≤n[X] — the free A-module consisting of polynomials
over A of degree ≤ n

An[X] — the affine space consisting of monic polynomials
over A of degree n.

ResdA,dB (A,B) — The resultant of A and B
“computed in degree (dA, dB)”

ResdA,dBj (A,B) — The j-th subresultant of A and B

“computed in degree (dA, dB)”

Figure 2. Notations used in the paper

(4) any element of valuation 0 is invertible.

Throughout this paper, we fix a discrete valuation ring W and assume
that the valuation on it is normalized so that it takes the value 1. We
recall that W admits a unique maximal ideal m, consisting of elements of
positive valuation. This ideal is principal and generated by any element of
valuation 1. Such an element is called a uniformizer. Let us fix one of them
and denote it by π. The residue field of W is the quotient W/m = W/πW
and we shall denote it by k.

The valuation defines a distance d on W by letting d(x, y) = e−val(x−y)

for all x, y ∈ W . We say that W is complete if it is complete with respect
to d, in the sense that every Cauchy sequence converges. Assuming that W
is complete, any element x ∈ W can be written uniquely as a convergent
series:

(2.1) x = x0 + x1π + x2π
2 + · · ·+ xnπ

n + · · ·
where the xi’s lie in a fixed set S of representatives of classes modulo π
with 0 ∈ S.

Let K denote the fraction field of W . The valuation v extends uniquely
to K by letting val(xy) = val(x) − val(y). Moreover, it follows from axiom

4 that K is obtained from W by inverting π. Thus, any element of K can
be uniquely written as an infinite sum:

(2.2) x =
∞∑
i=i0

xiπ
i

Numerical stability of Euclide algorithm over ultrametric fields 5

where i0 is some relative integer and the xi’s are as above. The valuation
of x can be easily read off this writing: it is the smallest integer i such that
xi 6= 0.

2.1.1. Examples. A first class of examples of discrete valuation rings are
rings of formal power series over a field. They are equipped with the stan-
dard valuation defined as follows: val(

∑
i≥0 ait

i) is the smallest integer i

with ai 6= 0. The corresponding distance on k[[t]] is complete. Indeed,
denoting by f [i] the term in ti in a series f ∈ k[[t]], we observe that a
sequence (fn)n≥0 is Cauchy if and only if the sequences (fn[i])n≥0 are all
ultimately constant. A Cauchy sequence (fn)n≥0 therefore converges to∑

i≥0 ait
i where ai is the limit of fn[i] when n goes to +∞. The DVR k[[t]]

has a distinguished uniformizer, namely t. Its maximal ideal is then the
principal ideal (t) and its residue field is canonically isomorphic to k. If one
chooses π = t and constant polynomials as representatives of classes mod-
ulo t, the expansion (2.1) is nothing but the standard writing of a formal
series. The fraction field of k[[t]] is the ring of Laurent series over k and,
once again, the expansion (2.2) corresponds to the usual writing of Laurent
series.

The above example is quite important because it models all complete
discrete valuation rings of equal characteristic, i.e. whose fraction field
and residue field have the same characteristic. On the contrary, in the
mixed characteristic case (i.e. when the fraction field has characteristic
0 and the residue field has positive characteristic), the picture is not that
simple. Nevertheless, one can construct several examples and, among them,
the most important is certainly the ring of p-adic integers Zp (where p is
a fixed prime number). It is defined as the projective limit of the finite
rings Z/pnZ for n varying in N. In concrete terms, an element of Zp is a
sequence (xn)n≥0 with xn ∈ Z/pnZ and xn+1 ≡ xn (mod pn). The addition
(resp. multiplication) on Zp is the usual coordinate-wise addition (resp.
multiplication) on the sequences. The p-adic valuation of (xn)n≥0 as above
is defined as the smallest integer i such that xi 6= 0. We can easily check
that Zp equipped with the p-adic valuation satisfies the four above axioms
and hence is a DVR. A uniformizer of Zp is p and its residue field is Z/pZ.
A canonical set of representatives of classes modulo p is {0, 1, . . . , p− 1}.

Given a p-adic integer x = (xn)n≥0, the i-th digit of xn in p-basis is
well defined as soon as i < n and the compatibility condition xn+1 ≡ xn
(mod pn) implies that it does not depend on n. As a consequence, a p-adic
integer can alternatively be represented as a “number” written in p-basis
having an infinite number of digits, that is a formal sum of the shape:

(2.3) a0 + a1p+ a2p
2 + · · ·+ anp

n + · · · with ai ∈ {0, 1, . . . , p− 1}.

6 Xavier Caruso

Additions and multiplications can be performed on the above writing ac-
cording to the rules we all studied at school (and therefore taking care of
carries). Similarly to the equal characteristic case, we prove that Zp is
complete with respect to the distance associated to the p-adic valuation.
The writing (2.3) corresponds to the expansion (2.1) provided that we have
chosen π = p and S = {0, 1, . . . , p− 1}. The fraction field of Zp is denoted
by Qp.

2.1.2. Symbolic computations over DVR. We now go back to a general
complete discrete valuation ring W , whose fraction field is still denoted by
K. The memory of a computer being necessarily finite, it is not possible
to represent exhaustively all elements of W . Very often, mimicing what
we do for real numbers, we choose to truncate the expansion (2.1) at some
finite level. Concretely, this means that we work with approximations of
elements of W of the form

(2.4) x =
N−1∑
i=0

xiπ
i +O(πN) with N ∈ N

where the notation O(πN) means that the xi’s with i ≥ N are not specified.

Remark 2.2. From a theoretical point of view, the expression (2.4) does
not represent a single element x of W but an open ball in W , namely
the ball of radius e−N centered at

∑N−1
i=0 xiπ

i (or actually at any element
congruent to it modulo πN). In other words, on a computer, we cannot work
with actual p-adic numbers and we replace them by balls which are more
tractable (at least, they can be encoded by a finite amount of information).

The integer N appearing in Eq. (2.4) is the so-called absolute precision
of x. The relative precision of x is defined as the difference N − v where v
denotes the valuation of x. Continuing the comparison with real numbers,
the relative precision corresponds to the number of significant digits since
x can be alternatively written:

x = pv
N−v−1∑
j=0

yjπ
j +O(πN) with yj = xj+v and y0 6= 0.

Of course, it may happen that all the xi’s (0 ≤ i < N) vanish, in which
case the valuation of x is undetermined. In this particular case, the relative
precision of x is undefined.

There exist simple formulae for following precision after each single el-
ementary computation. For instance, basic arithmetic operations can be

Numerical stability of Euclide algorithm over ultrametric fields 7

handled using:

(
a+O(πNa)

)
+
(
b+O(πNb)

)
= a+ b+O(πmin(Na,Nb)),

(2.5)

(
a+O(πNa)

)
−
(
b+O(πNb)

)
= a− b+O(πmin(Na,Nb)),

(2.6)

(
a+O(πNa)

)
×
(
b+O(πNb)

)
= ab+O(πmin(Na+val(b),Nb+val(a))).

(2.7)

(
a+O(πNa)

)
÷
(
b+O(πNb)

)
=
a

b
+O(πmin(Na−val(b),Nb+val(a)−2val(b))).1

(2.8)

with the convention that val(a) = Na (resp. val(b) = Nb) if all known
digits of a (resp. b) are zero. Combining these formulae, one can track
the precision while executing any given algorithm. This is the analogue
of the standard interval arithmetic over the reals. Many usual softwares
(as sagemath, magma) implement p-adic numbers and formal series this
way. We shall see later that this often results in overestimating the losses
of precision.

Example 2.3. As an illustration, let us examine the behaviour of the
precision on the sequence (Ri) while executing Algorithm 1 with the input:

A = X5 +
(
27 +O(25)

)
X4 +

(
11 +O(25)

)
X3

+
(
5 +O(25)

)
X2 +

(
18 +O(25)

)
X +

(
25 +O(25)

)
B = X5 +

(
24 +O(25)

)
X4 +

(
25 +O(25)

)
X3

+
(
12 +O(25)

)
X2 +

(
3 +O(25)

)
X +

(
10 +O(25)

)
.

The remainder in the Euclidean division of A by B is S3 = A−B. According
to Eq. (2.6), we do not loose precision while performing this substraction
and the result we get is:

S3 =
(
3 +O(25)

)
X4 +

(
18 +O(25)

)
X3

+
(
25 +O(25)

)
X2 +

(
15 +O(25)

)
X +

(
15 +O(25)

)
.

In order to compute S4, we have now to perform the Euclidean division
of S2 = B by S3. Noting that the leading coefficient of S2 has valuation
0 and using Eq (2.5)–(2.8), we deduce that this operation does not loose
precision again. We get:

S4 =
(
26 +O(25)

)
X3 +

(
17 +O(25)

)
X2 +

(
4 +O(25)

)
X +

(
16 +O(25)

)
.

1We observe that these formulae can be rephrased as follows: the absolute (resp. relative)

precision on the result of a sum or a substraction (resp. a product or a division) is the minimum
of the absolute (resp. relative) precisions on .

8 Xavier Caruso

We observe now that the leading coefficient of S4 has valuation 1. Ac-
cording to Eq. (2.8), divising by this coefficient — and therefore a fortioti
computing the euclidean division of S3 by S4 — will result in loosing at
least one digit in relative precision. The result we find is:

S5 =
(

3
4 +O(22)

)︸ ︷︷ ︸
rel. prec.=4

X2 +
(
6 +O(23)

)︸ ︷︷ ︸
rel. prec.=2

X +
(
3 +O(23)

)︸ ︷︷ ︸
rel. prec.=3

.

Continuing this process, we obtain:

S6 =
(
20 +O(25)

)
X +

(
12 +O(25)

)
and S7 = 7

4 +O(2).

The relative precision on the final result S7 is then 3, which is less than the
initial precision which was 5.

2.2. Subresultants. A first issue when dealing with numerical compu-
tations of gcds of polynomials over W is that the gcd function is not
continuous: it takes the value 1 on an open dense subset without being
constant. This of course annihilates any hope of computing gcds of poly-
nomials when only approximations of them are known. Fortunately, there
exists a standard way to recover continuity in this context: it consists in
replacing gcds by subresultants which are playing an analoguous role. For
this reason, in what follows, we will exclusively consider the problem of
computing subresultants.

Definitions and notations. We recall briefly basic definitions and results
about resultants and subresultants. For a more complete exposition, we
refer to [2, §4.2], [8, §3.3] and [12, §4.1]. Let A be an arbitrary ring and let
A and B be two polynomials with coefficients in A. We pick in addition
two integers dA and dB greater than or equal to the degree of A and B
respectively. We consider the Sylvester application:

ψ : A<dB [X]× A<dA [X] → A<dA+dB [X]

(U, V) 7→ AU +BV

where A<d[X] refers to the finite free A-module of rank d consisting of
polynomials over A of degree strictly less than d. The Sylvester matrix is
the matrix of ψ in the canonical ordered basis, which are

((XdB−1, 0), . . . , (X, 0), (1, 0), (0, XdA−1), . . . , (0, 1)) for the source

and (XdA+dB−1, . . . , X, 1) for the target.

The resultant of A and B (computed in degree dA, dB) is the determinant
of the ψ; we denote it by ResdA,dB (A,B). We observe that it vanishes
if dA > degA or dB > degB. In what follows, we will freely drop the
exponent dA, dB if dA and dB are the degrees of A and B respectively. Using
Cramer formulae, we can build polynomials UdA,dB (A,B) ∈ A<dB [X] and
V dA,dB (A,B) ∈ A<dA [X] satisfying the two following conditions:

Numerical stability of Euclide algorithm over ultrametric fields 9

i) their coefficients are, up to a sign, maximal minors of the Sylvester
matrix, and

ii) A · UdA,dB (A,B) +B · V dA,dB (A,B) = ResdA,dB (A,B).

These polynomials are called the cofactors of A and B (computed in degree
dA, dB).

The subresultants are defined in the similar fashion. Given an integer
j in the range [0, d) where d = min(dA, dB), we consider the “truncated”
Sylvester application:

ψj : A<dB−j [X]× A<dA−j [X] → A<dA+dB−j [X]/A<j [X]

(U, V) 7→ AU +BV.

Its determinant (in the canonical basis) is the j-th principal subresultant
of A and B (computed in degree dA, dB). Just as before, we can construct

polynomials UdA,dBj (A,B) ∈ A<dB−j [X] and V dA,dB
j (A,B) ∈ A<dA−j [X]

such that:

i) their coefficients are, up to a sign, maximal minors of the Sylvester
matrix2, and

ii) A · UdA,dBj (A,B) +B · V dA,dB
j (A,B) ≡ detψj (mod A<j [X]).

We set RdA,dBj (A,B) = A·UdA,dBj (A,B)+B·V dA,dB
j (A,B): it is the j-th sub-

resultant of A and B (computed in degree dA, dB). The above congruence

implies that RdA,dBj (A,B) has degree at most j and that its coefficient of
degree j is the j-th principal subresultant of A and B. As before, we freely
drop the exponent dA, dB when dA and dB are equal to the degrees of A and
B respectively. When j = 0, the application ψj is nothing but ψ. There-

fore, ResdA,dB0 (A,B) = ResdA,dB (A,B) and, similarly, the cofactors agree:

we have UdA,dB0 (A,B) = UdA,dB (A,B) and V dA,dB
0 (A,B) = V dA,dB (A,B).

We recall the following very classical result.

Theorem 2.4. We assume that A is a field. Let A and B be two polynomi-
als with coefficients in A. Let j be the smallest integer such that Resj(A,B)
does not vanish. Then Resj(A,B) is a gcd of A and B.

Since they are defined as determinants, subresultants behave well with
respect to base change: if f : A → A′ is a morphism of rings and A and

B are polynomials over A then ResdA,dBj (f(A), f(B)) = f
(
ResdA,dBj (A,B)

)
where f(A) and f(B) denotes the polynomials deduced from A and B
respectively by applying f coefficient-wise. This property is sometimes
referred to as the functoriality of subresultants. We emphasize that, when
f is not injective, the relation Resj(f(A), f(B)) = f

(
Resj(A,B)

)
does not

hold in general since applying f may decrease the degree. Nevertheless, if
dA and dB remained fixed, this issue cannot happen.

2Indeed, observe that the matrix of ψj is a submatrix of the Sylvester matrix.

10 Xavier Caruso

The subresultant pseudo-remainder sequence. When A is a domain, there
exists a standard nice Euclide-like reinterpreation of subresultants, which
provides in particular an efficient algorithm for computing them. Since it
will play an important role in this paper, we take a few lines to recall it.

This reinterpretation is based on the so-called subresultant pseudo-re-
mainder sequence which is defined as follows. We pick A and B as above.
Denoting by (P %Q) the remainder in the Euclidean division of P by Q,
we define two recursive sequences (Si) and (ci) as follows:

(2.9)


S−1 = A, S0 = B, c−1 = 1

Si+1 = (−si)εi+1s−1
i−1 c

−εi
i · (Si−1 %Si) for i ≥ 0

ci+1 = s
εi+1

i+1 · c
1−εi+1

i for i ≥ −1.

Here ni = degSi, εi = ni+1 − ni and si is the leading coefficient of Si if
i ≥ 0 and s−1 = 1 by convention. These sequences are finite and the above
recurrence applies until Si has reached the value 0.

Proposition 2.5. With the above notations, we have:

Resj(A,B) = Si if j = ni−1 − 1

= 0 if ni < j < ni−1 − 1

=
(
si
si−1

)εi−1 · Si if j = ni

for all i such that Si is defined.

Remark 2.6. The Proposition 2.5 provides a formula for all subresultants.
We note moreover that, in the common case where ni−1 = ni − 1, the two
formulae giving Resni(A,B) agree.

Mimicing ideas behind extended Euclide’s algorithm, one can define the
“extended subresultant pseudo-remainder sequence” as well and obtains
recursive formulae for cofactors at the same time.

Important simplifications occur in the “normal” case, which is the case
where all principal subresultants do not vanish. Under this additional as-
sumption, one can prove that the degrees of the Si’s decrease by one at
each step; in other words, degSi = dB − i for all i. The sequence (Si) then
stops at i = dB. Moreover, the εi’s and the ci’s are now all “trivial”: we
have εi = 1 and ci = si for all i. The recurrence formula then becomes:

Si+1 = s2
i · s−2

i−1 · (Si−1 %Si) for i ≥ 1.

and Proposition 2.5 now simply states that Rj = SdB−j . In other words,
still assuming that all principal subresultants do not vanish, the sequence
of subresultants obeys to the recurrence:

Rd+1 = A, Rd = B, Rj−1 = r2
j · r−2

j+1 · (Rj+1 %Rj)(2.10)

Numerical stability of Euclide algorithm over ultrametric fields 11

where rj is the leading coefficient of Rj for j ≤ d and rd+1 = 1 by conven-
tion. Moreover, a similar recurrence exists for cofactors as well:

Ud+1 = 1, Ud = 0, Uj−1 = r2
j · r−2

j+1 · (Uj+1 −QjUj)(2.11)

Vd+1 = 0, Ud = 1, Vj−1 = r2
j · r−2

j+1 · (Vj+1 −QjVj)(2.12)

where Qj is quotient in the Euclidean division of Rj+1 by Rj .
Proposition 2.5 of course yields an algorithm for computing subresul-

tants. In the normal case and assuming further for simplicity that the
input polynomials are monic of same degree, it is Algorithm 2, which uses
the primitive prem for computing pseudo-remainders. We recall that the
pseudo-remainder of the division of A by B is the polynomial prem(A,B)
defined by prem(A,B) = lc(B)degB−degA+1(A%B) where lc(B) denotes the
leading coefficient of B.

Algorithm 2: Subresultant pseudo remainder sequence algorithm

Input : Two polynomials A,B ∈ Kd[X] (given at finite precision)
Output: The complete sequence of subresultants of A and B.

1 Rd ← B; rd ← 1

2 Rd−1 ← B −A
3 for j = (d− 1), (d− 2), . . . , 1 do
4 rj ← coefficient in Xj of Rj
5 if rj = 0 then raise NotImplementedError

6 Rj−1 ← prem(Rj+1, Rj)/r
2
j+1

7 return Rd−1, . . . , R0

Unfortunately, while working over a complete discrete valuation field K,
the stability of Algorithm 2 is as bad as that of standard Euclide algorithm.
The use of Algorithm 2 is interesting because it avoids denominators (i.e.
we always work over W instead K) but it does not improve the stability.

Example 2.7. Applying Algorithm 2 with the input (A,B) of Example 2.3,
we obtain:

R4 =
(
29 +O(25)

)
X4 +

(
14 +O(25)

)
X3 +

(
5 +O(25)

)
X2

+
(
17 +O(25)

)
X +

(
17 +O(25)

)
R3 =

(
4 +O(25)

)
X3 +

(
13 +O(25)

)
X2 +

(
4 +O(25)

)
X +

(
16 +O(25)

)
R2 =

(
5 +O(25)

)
X2 +

(
20 +O(25)

)
X +O(25)

R1 =
(
1 +O(2)

)
X +

(
1 +O(2)

)
R0 = 1 +O(2)

12 Xavier Caruso

We observe in particular that the absolute precision on R0 is 1, although it
should be at least 5 since R0 is given by an integral polynomial expression
in terms of the coefficients of A and B. We note moreover that the relative
precision on R0 (which is 1 as well) is worse that the relative precision we
got on S7 (which was 3) while executing Algorithm 1 (cf Example 2.3).

3. Unstability of Euclide-like algorithms

In this section, we provide strong evidences for explaining the average
loss of precision observed while executing Algorithm 2. Concretely, in §3.1
we establish3 a lower bound on the losses of precision which depends on
extra parameters, that are the valuations of the principal subresultants.
The next subsections (§§3.2 and 3.3) aim at studying the behaviour of
these valuations on random inputs; they thus have a strong probabilistic
flavour.

Remark 3.1. The locution Euclide-like algorithms (which appears in the
title of the Section) refers to the family of algorithms computing gcds
or subresultants by means of successive Euclidean divisions. We believe
that the stability of all algorithms in this family is comparable since we are
precisely loosing precision while performing Euclidean divisions. Among all
algorithms in this family, we chose to concentrale ourselves on Algorithm 2
because it is simpler due to the fact that it only manipulates polynomials
with coefficients in W . Nevertheless, our method extends to many other
Euclide-like algorithms including Algorithm 1; this extension is left as an
exercice to the reader.

3.1. A lower bound on losses of precision. We consider two fixed
polynomials A and B with coefficients in W whose coefficients are known
with precision O(πN) for some positive integerN . For simplicity, we assume
further that A and B are both monic and share the same degree d. For any
integer j between 0 and d− 1, we denote by Rj the j-th subresultant of A
and B.

In this subsection, we estimate the loss of precision if we compute the
Rj ’s using the recurrence (2.10). In what follows, we are going to use
a flat precision model : this means that a polynomial P (X) is internally
represented as:

P (X) =
n∑
i=1

aiX
i +O(πN) with ai ∈ K and N ∈ Z.

In other words, we assume that the software we are using does not carry a
precision data on each coefficient but only a unique precision data for the

3in a model of precision which is slightly weaker that the usual one; we refer to §3.1 for a
complete discussion about this.

Numerical stability of Euclide algorithm over ultrametric fields 13

whole polynomial. Concretely this means that, after having computing a
polynomial, the software truncates the precision on each coefficient to the
smallest one. One can argue that this assumption is too strong (compared
to usual implementations of p-adic numbers). Nevertheless, it defines a
simplified framework in which computations can be carried out and experi-
ments show that it rather well reflects the behaviour of the loss of precision
in Euclide-like algorithms.

Let Vj be the valuation of the principal j-th subresultant of A,B and
Wj be the minimum of the valuations of the coefficients of Rj . Of course
we have Vj ≥Wj and we set δj = Vj −Wj .

Proposition 3.2. Let A and B as above. Either Algorithm 2 fails or it
outputs the subresultants Rj’s at precision O(πNj) with:

Nj ≤ N + Vj+1 − 2 · (δj+1 + δj+2 + · · ·+ δd−1).

Proof. Using that Rj+1 and Rj have the expected degrees, the remainder
(Rj+1 %Rj) is computed as follows:

we set: S = Rj+1 − rj+1 · r−1
j ·Rj

and we have: Rj+1 %Rj = S − s · r−1
j ·Rj

where s is the coefficient of degree j of S. Let us first estimate the precision
of S. Using (2.7)–(2.8), we find that the computed relative precision on
rj+1 · r−1

j · Rj is min(Nj+1 − Vj+1, Nj − Vj). The absolute precision of

this value is then M = min(Nj+1 − δj , Nj − δj + Vj+1 − Vj). The latter
is also the precision of S since the first summand Rj+1 is known with
higher precision. Repeating the argument, we find that the precision of
(Rj+1 %Rj) is equal to min(M − δj , Nj − δj + val(s) − Vj) and therefore
is lower bounded by M − δj ≤ Nj − 2δj + Vj+1 − Vj . From this, we derive
Nj−1 ≤ Nj−2δj−Vj+1 +Vj and the proposition finally follows by summing
up these inequalities. �

The difference N−N0 = −V1+2
∑d

k=1 δj is a lower bound on the number
of digits lost after having computed the resultant using the subresultant
pseudo-remainder sequence algorithm. In the next subsection (cf Corollary
3.6), we shall see that V1 and all δj ’s are approximatively equal to 1

p−1 on

average. The loss of precision then grows linearly with respect to d. This
confirms the precision benchmarks shown in Figure 1. We emphasize one
more time that this loss of precision is not intrinsic but an artefact of the
algorithm we have used; indeed, one should not loose any precision when
computing resultants because they are given by polynomial expressions.

3.2. Behaviour on random inputs. Proposition 3.2 gives an estimation
of the loss of precision in Euclide-like algorithms in terms of the quantities
Vj and δj . It is nevertheless a priori not clear how large these numbers are.

14 Xavier Caruso

The aim of this paragraph is to compute their order of magnitude when A
and B are picked randomly among the set of monic polynomials of degree
d with coefficients in W . In what follows, we assume that the residue field
k = W/πW is finite and we use the letter q to denote its cardinality.

We endow W with its Haar measure. The set Ω of couples of monic
polynomial of degree d with coefficients in W is canonically in bijection
with W 2d and hence inherits the product measure. We consider Vj , Wj

and δj as random variables defined on Ω.

Theorem 3.3. We fix j ∈ {0, . . . , d − 1}. Let X0, . . . , Xd−1 be d pairwise
independant discrete random variables with geometric law of parameter (1−
q−1), i.e.

P[Xi = k] = (1− q−1) · q−k (with 0 ≤ i < d and k ∈ N).

Then Vj is distributed as the random variable

Yj =
d∑
i=0

min(Xj−i, Xj−i+1, . . . , Xj+i)

with Xi = +∞ if i < 0 and Xi = 0 if i ≥ d.

Remark 3.4. The above Theorem does not say anything about the corre-
lations between the Xj ’s. In particular, we emphasize that it is false that
the tuple (Vd−1, . . . , V0) is distributed as (Yd−1, . . . , Y0). For instance, one
can prove that (Vd−1, Vd−2) is distributed as (X, X ′+min(X ′, [X/2])) where
X and X ′ are two independant discrete random variables with geometric
law of parameter (1− q−1) and the notation [·] stands for the integer part
function. In particular, we observe that (Vd−1, Vd−2) 6= (2, 1) almost surely
although the events {Vd−1 = 2} and {Vd−2 = 1} both occur with positive
probability.

Nonetheless, a consequence of Proposition 3.10 below is that the variables
V̄j = 1{Vj=0} are mutually independant.

Theorem 3.5. For all j ∈ {0, . . . , d− 1} and all m ∈ N, we have:

P[δj ≥ m] ≥ (q − 1)(qj − 1)

qj+1 − 1
q−m.

The proof of these two theorems will be given in §3.3. We now derive
some consequences. Let σ denote the following permutation:(

1 2 · · · d
2

d
2 + 1 d

2 + 2 · · · d

1 3 · · · d− 1 d d− 2 · · · 2

)
if 2 | d(

1 2 · · · d+1
2

d+3
2

d+5
2 · · · d

1 3 · · · d d− 1 d− 3 · · · 2

)
if 2 - d.

In other words, σ takes first the odd values in [1, d] in increasing order and
then the even values in the same range in decreasing order.

Numerical stability of Euclide algorithm over ultrametric fields 15

Corollary 3.6. For all j ∈ {0, . . . , d− 1}, we have:

(1) E[Vj] =

d−j∑
i=1

1

qσ(i) − 1
; in particular 1

q−1 ≤ E[Vj] <
q

(q−1)2

(2) qj−1
qj+1−1

≤ E[δj] ≤ E[Vj]

(3) σ[Vj]
2 =

d−j∑
i=1

(2i− 1) · qσ(i)

(qσ(i) − 1)2
; in particular

√
q

q−1 ≤ σ[Vj] <
q
√
q+1

(q−1)2

(4) P[Vj ≥ m] ≤ q−m+O(
√
m)

(5) E[max(V0, . . . , Vd−1)] ≤ logq d+O(
√

logq d)

Proof. By Theorem 3.3, we have E[Vj] =
∑d

i=0 E[Zi] with

Zi = min(Xj−i, . . . , Xj+i)

(j is fixed during all the proof). Our conventions imply that Zi vanishes if
i ≥ d− j. Let us define τ(1), . . . , τ(d− j) as the numbers σ(1), . . . , σ(d− j)
sorted in increasing order. For i < d − j, the random variable Zi is the
minimum of τ(i) independant random variables with geometric distribution
of parameter (1 − q−1). Thus its distribution is geometric of parameter

(1− q−τ(i)). Its expected value is then 1
qτ(i)−1 and the first formula follows.

The inequality 1
q−1 ≤ E[Vj] is clear because 1

q−1 is the first summand in the

expansion of E[Vj]. The upper bound is derived as follows:

E[Vj] <
∞∑
i=0

1

qi − 1
≤
∞∑
i=0

1

qi − qi−1
=

q

(q − 1)2
.

The first inequality of claim (2) is obtained from the relation

E[δj] =
∞∑
m=1

m · P[δj = m] =
∞∑
m=1

P[δj ≥ m]

using the estimation of Theorem 3.5. The second inequality is clear because
δj ≤ Vj .

The variance of Vj is related to the covariance of Zi’s thanks to the
formula

Var(Vj) =
∑

1≤i,i′≤d−j
Cov(Zi, Zi′).

Moreover, given X and X ′ two independant variables having geometric
distribution of parameter (1 − a−1) and (1 − b−1) respectively, a direct
computation gives:

Cov(X,min(X,X ′)) =
ab

(ab− 1)2
.

16 Xavier Caruso

Applying this to our setting, we get:

Cov(Zi, Zi′) =
qe(i,i

′)

(qe(i,i′) − 1)2

where e(i, i′) = min(τ(i), τ(i′)) = τ(min(i, i′)). Summing up these contri-
butions, we get the equality in (3). The inequalities are derived from this
similarly to what we have done in (1).

We now prove (4). Let (Gi)i≥0 be a countable family of independant
random variables having all geometric distribution of parameter (1− q−1).
We set G =

∑∞
i=1 min(G1, . . . , Gi). Thanks to Theorem 3.3, it is enough

to prove that P[G ≥ m] ≤ q−m+O(
√
m). We introduce the event Em formu-

lated as follows: there exists a partition m = (m1, . . . ,m`) of m such that
Gi ≥ mi for all i ≤ `. We claim that Em contains the event {G ≥ m}.
Indeed assume G ≥ m and set m′i = min(G1, . . . , Gi). Clearly, the sequence
(m′i)i≥1 is nondecreasing and

∑∞
i=1m

′
i ≥ m by assumption. Therefore there

exists a partition (m1, . . . ,m`) of m with mi ≤ m′i for all i. These mi’s also
satisfy Gi ≥ mi and our clair is then proved. We derive P[G ≥ m] ≤ P[Em]
and therefore:

P[G ≥ m] ≤
∑
m

∏̀
i=1

P[Gi ≥ mi]

where the latter sum runs over all partitions m = (m1, . . . ,m`) of m. Re-
placing P[Gi ≥ mi] by q−mi , we get P[Em] ≤ p(m)·q−m where p(m) denotes
the number of partitions of m. By a famous formula [1], we know that

log p(m) is equivalent to π
√

2m/3. In particular p(m) ∈ qO(
√
m) and (4) is

proved.
We now derive (5) by a standard argument. It follows from (4) that

P[max(V0, . . . , Vd−1)] ≤ d · q−m+c
√
m

for some constant c. Therefore:

E[max(V0, . . . , Vd−1)] ≤
∞∑
m=1

min(1, d · q−m+c
√
m).

Let m0 denote the smallest index such that d·q−m0+c
√
m0 , i.e. m0−c

√
m0 ≥

logq d. Solving the latest equation, we get m0 = logq d+O(
√

logq d). More-

over
∑∞

m=m0
d q−m+c

√
m is bounded independantly of d. The result fol-

lows. �

3.3. Proof of Theorems 3.3 and 3.5. During the proof, A and B will
always refer to monic polynomials of degree d and Rj (resp. Uj and Vj) to
their j-th subresultant (resp. their j-th cofactors). If P is a polynomial and
n is a positive integer, we use the notation P [n] to refer to the coefficient
of Xn in P . We set rj = Rj [j].

Numerical stability of Euclide algorithm over ultrametric fields 17

Preliminaries on subresultants. We collect here various useful relations
between subresultants and cofactors. During all these preliminaries, we
work over an arbitrary base ring A.

Proposition 3.7. The following relations hold:

• Uj−1Vj − UjVj−1 = (−1)jr2
j ;

• Uj [d−j−1] = −Vj [d−j−1] = (−1)jrj+1;

• Resj,j−1
k (Rj , Rj−1) = r

2(j−k−1)
j Rk for k < j;

• Resd−j,d−j−1
k (Uj−1, Uj) = r

2(d−j−k−1)
j Ud−1−k for k < d− j.

Moreover rj depends only on the 2(d− j)− 1 coefficients of highest degree
of A and B.

Proof. By functoriality of subresultants, we may assume that A is the ring
Z[a0, . . . , ad−1, b0, . . . , bd−1] and that A and B are the two generic monic
polynomials A = Xd +

∑
i=0 aiX

i and B = Xd +
∑

i=0 biX
i. Under this

additional assumption, all principal subresultant are nonzero. Therefore,
the sequences (Rj)j , (Uj)j and (Vj)j are given by the recurrences (2.10)–
(2.12). The two first announced relations follow easily. Let now focus on

the third one. We set R̃j = Rj and R̃k = r
2(j−k−1)
j Rk for k < j. An easy

decreasing induction on k shows that this sequence obeys to the recurrence:

R̃k−1 = r̃2
k · r̃−2

k+1 · (R̃k+1 % R̃k)

where r̃j = 1 and r̃k is the coefficient of R̃k of degree k for all k < j.

Comparing with (2.10), this implies that R̃k is the k-th subresultant of the
pair (Rj , Rj−1) and we are done. The fourth equality and the last statement
are proved in a similar fashion. �

For any fixed index j ∈ {1, . . . , d− 1}, we consider the function ψj that
takes a couple (A,B) ∈ Ad[X]2 to the quadruple (Uj , Uj−1, Rj , Rj−1). It
follows from Proposition 3.7 that ψj takes its values in the subset Ej of(

A≤d−j−1[X]
)
×
(
A≤d−j [X]

)
×
(
A≤j [X]

)
×
(
A≤j−1[X]

)
consisting of the quadruples (Uj ,Uj−1,Rj ,Rj−1) such that:

Uj−1[d−j] = (−1)j−1 Rj [j]
and Resd−j,d−j−1(Uj−1,Uj) = −Rj [j]2(d−j−1).

Let E×j be the subset of Ej defined by requiring that Rj [j] is invertible in A.

In the same way, we define Ω×j as the subset of Ad[X]2 consisting of couples

(A,B) whose j-th principal subresultants (in degree (d, d)) is invertible in
A.

Proposition 3.8. The function ψj induces a bijection between Ω×j and E×j .

18 Xavier Caruso

Proof. We are going to define the inverse of ψj . We fix a quadruple
(Uj ,Uj−1,Rj ,Rj−1) in E×j and set a = Rj [j]. Let Wj and Wj−1 denote

the cofactors of (Uj−1,Uj) in degree (d−j, d−j−1). Define Vj = αWj and

Vj−1 = −αWj−1 where α = a2j−2d+4. The relation:

(3.1) Uj−1Vj − UjVj−1 = a2.

then holds. We now define A and B using the formulae:

(3.2)

{
A = (−1)j · a−2 · (VjRj−1 − Vj−1Rj)
B = (−1)j−1 · a−2 · (UjRj−1 − Uj−1Rj).

They are both monic of degree d, so that we can define ϕj as the func-
tion taking (Uj ,Uj−1,Rj ,Rj−1) to (A,B). The composite ϕj ◦ ψj is easily
checked to be the identity: indeed, if ψj(A,B) = (Uj ,Uj−1,Rj ,Rj−1), the
relation (3.1) implies that Vj−1 and Vj are the missing cofactors (up to a
sign) and, consequently, A and B have to be given by the system (3.2).

To conclude the proof, it remains to prove that the composite in the
other direction ψj ◦ ϕj is the identity as well. Since both ϕj and ψj are
componant-wise given by polynomials, we can use functoriality and assume
that A is the field Q(c0, c1, . . . , cn) (with n = 2d) where each variable ci
corresponds to one coefficient of Uj , Uj−1, Rj and Rj−1 with the convention
that c0 (resp. (−1)j−1c0) is used for the leading coefficients of Rj (resp.
Uj−1). Set:

(A,B) = ϕj(Uj ,Uj−1,Rj ,Rj−1)

and (Uj , Uj−1, Rj , Rj−1) = ψj(A,B)

Since A is a field and Rj [j] does not vanish, the Sylvester mapping

A<d−j [X]× A<d−j [X] → A<2d−j [X]/A<j [X]

(U, V) 7→ AU +BV

has to be bijective. Therefore there must exist λ ∈ A such that Rj = λ ·Rj
and Uj = λ · Uj . Similarly (Rj−1,Uj−1) = µ · (Rj−1, Uj−1) for some µ ∈ A.
Identifying the leadings coefficients, we get λ = µ. Now observe that:

Resd−j,d−j−1(Uj−1,Uj) = Resd−j,d−j−1(λUj−1, λUj)

= λ2d−2j−1 · Resd−j,d−j−1(Uj−1, Uj).

Noting that (Uj ,Uj−1,Rj ,Rj−1) and (Uj , Uj−1, Rj , Rj−1) both belong to
Ej , we derive:

Rj [j]2(d−j−1) = λ2d−2j−1 ·Rj [j]2(d−j−1)

from what we finally get λ = 1 since Rj = λ ·Rj . �

Corollary 3.9. We assume that A = W . Then the map ψj : Ω×j → E
×
j

preserves the Haar measure.

Numerical stability of Euclide algorithm over ultrametric fields 19

Proof. Proposition 3.8 applied with the quotient rings A = W/πnW shows
that (ψj mod πn) is a bijection for all n. This proves the Corollary. �

The distribution in the residue field. We assume in this paragraph
that A is a finite field of cardinality q. We equip ΩA = Ad[X]2 with the
uniform distribution. For j ∈ {0, . . . , d − 1} and (A,B) ∈ ΩA, we set
V̄j(A,B) = 1 if rj(A,B) vanishes and V̄j(A,B) = 0 otherwise. The func-
tions V̄j ’s define random variables over ΩA.

Proposition 3.10. With the above notations, the V̄j’s are mutually inde-
pendant and they all follow a Bernoulli distribution of parameter 1

q .

Proof. Given J ⊂ {0, . . . , d − 1}, we denote by ΩA(J) the subset of ΩA

consisting of couples (A,B) for which rj(A,B) does not vanish if and only if

j ∈ J . We want to prove that ΩA(J) has cardinality q2d−Card J(q−1)Card J .
To do this, we introduce several additional notations. First, we write J =
{n1, . . . , n`} with n1 > n2 > · · · > n` and set n`+1 = 0 by convention.
Given n and m two integers with m < n, we let V[m,n) denote the set of

polynomials of the form amX
m + am+1X

m+1 · · · + anX
n with ai ∈ A and

an 6= 0. Clearly, V[m,n) has cardinality (q− 1)qn−m. If P is any polynomial
of degree n and m < n is an integer, we further define P [m:] ∈ V[m,n)

as the polynomial obtained from P by removing its monomials of degree
< m. Finally, given (A,B) in ΩA, we denote by (Si(A,B)) its subresultant
pseudo-remainder sequence as defined in §2.2. We note that, if (A,B) ∈
ΩA(J), the sequence (Si(A,B)) stops at i = ` and we have degSi = ni for
all i. We now claim that the mapping

ΛJ : ΩA(J) → V[n1,n2) × · · · × V[n`,n`+1)

(A,B) 7→
(
Si(A,B)[ni+1:]

)
1≤i≤`

is injective. In order to establish the claim, we remark that the knowledge
of Si−1(A,B) and Si(A,B)[ni+1:] (for some i) is enough to reconstruct the
quotient of the Euclidean division of Si(A,B) by Si−1(A,B). Thus, one
can reconstruct Si(A,B) from the knowledge of Si−2(A,B), Si−1(A,B)
and Si(A,B)[ni+1:]. We deduce that ΛJ(A,B) determines uniquely all
Si(A,B)’s and finally A and B themselves. This proves the claim.

To conclude the proof, we note that the claim implies that the cardinality
of ΩA(J) is at most q2d−`(q − 1)`. Summing up these inequalities over all
possible J , we get Card ΩA ≤ q2d. This latest inequality being an equality,
we must have Card ΩA(J) = q2d−Card J(q − 1)Card J for all J . �

Proof of Theorem 3.5. We assume first that j < d − 1. Proposition
3.10 above ensures that rj+1 is invertible in W with probability (1− q−1).
Moreover, assuming that this event holds, Corollary 3.9 implies that Rj is

20 Xavier Caruso

distributed in W≤j [X] according to the Haar measure. An easy computa-

tion gives P[δj ≥ m | rj+1 ∈W×] = q(qj−1)
qj+1−1

and therefore:

P[δj ≥ m] ≥ (1− q−1) · q(q
j − 1)

qj+1 − 1
=

(q − 1)(qj − 1)

qj+1 − 1
.

The case j = d − 1 is actually simpler. Indeed, the same argument works
except that we know for sure that rj+1 = rd is invertible since it is equal

to 1 by convention. In that case, the probability is then equal to q(qj−1)
qj+1−1

.

Proof of Theorem 3.3. We fix j ∈ {0, . . . , d− 1}. We define the random

variable V
(0)
j as the greatest (nonnegative) integer v such that all principal

subresultants rj′ have positive valuation for j′ varying in the open range
(j − v, j + v) (with the convention that rj′ = 0 whenever j′ < 0). It is

clear from the definition that rj−v or rj+v (with v = V
(0)
j) has valuation 0.

Moreover, assuming first that val(rj+v) = 0, we get by Proposition 3.7:

val(rj) = v + val
(
rj−v,j−v+1
v (A(0), B(0))

)
with A(1) = 1

rj+vXj−v−1 ·Rj+v[j−v−1 :],

and B(1) = A(1) + 1
πXj−v−1 ·Rj+v−1[j−v−1 :]

where we recall that, given a polynomial P and an integer m, the notation
P [m:] refers to the polynomial obtained from P by removing its monomials

of degree strictly less than m. We notice that all the coefficients of B(1) lie
in W because rj′ has positive valuation for j′ ∈ (j−v, j+v). Furthermore,

Corollary 3.9 shows that the couple (A(1), B(1)) is distributed according
to the Haar measure on (W2v−1[X])2. If val(rj+v) = 0, one can argue
similarly by replacing Rj+v and Rj+v−1 by the cofactors Uj−v and Uj−v+1

respectively. Replacing (A,B) by (A(1), B(1)), we can now define a new

random variable V
(1)
j and, continuing this way, we construct an infinite

sequence V
(m)
j such that Vj =

∑
m≥0 V

(m)
j .

We now introduce a double sequence (X
(m)
i)0≤i<d,m≥0 of mutually inde-

pendant random variables with Bernoulli distribution of parameter 1
q and

we agree to set X
(m)
j′ = 0 for j′ < 0 and X

(m)
j′ = 1 for j ≥ d. It follows

from Proposition 3.10 (applied with A = k) that V
(0)
j has the same distri-

bution than Y
(0)
j =

∑d
i=1 min(X

(0)
j−i, . . . , X

(0)
j+i). In the same way, keeping

in mind that A(1) and B(1) have both degree 2V
(0)
j − 1, we find that V

(1)
j

has the same distribution than
∑V

(0)
j −1

i=1 min(X
(1)
j−i, . . . , X

(1)
j+i), which can

Numerical stability of Euclide algorithm over ultrametric fields 21

be rewritten as Y
(1)
j =

∑d
i=1 min(X

(0)
j−i, X

(1)
j−i, . . . , X

(0)
j+i, X

(1)
j+i). More pre-

cisely, the equidistribution of (A(1), B(1)) shows that the joint distribution

(V
(0)
j , V

(1)
j) is the same as that of (Y

(0)
j , Y

(1)
j). Repeating the argument, we

see that (V
(m)
j)m≥0 is distributed as (Y

(m)
j)m≥0 where:

Y
(m)
j =

d∑
i=1

min(X
(0)
j−i, . . . X

(m)
j−i , . . . , X

(0)
j+i, . . . , X

(m)
j+i).

Setting finally Xi =
∑

m≥0 min(X
(0)
1 , . . . , X

(m)
i), we find the Xi’s (0 ≤ i <

d) are mutually independant and that they all follow a geometric distribu-
tion of parameter (1 − q−1). We now conclude the proof by noting that

Yj equals
∑d

i=1 min(Xj−i, . . . , Xj+i) (recall that the X
(m)
i ’s only take the

values 0 and 1).

4. A stabilized algorithm for computing subresultants

We have seen in the previous sections that Euclide-like algorithm are
unstable in practice. On the other hand, one can compute subresultants in
a very stable way by evaluating the corresponding minors of the Sylvester
matrix. Doing so, we do not loose any significant digit. Of course, the
downside is the rather bad efficiency.

In this section, we design an algorithm which combines the two advan-
tages: it has the same complexity than Euclide’s algorithm and it is very
stable in the sense that it does not loose any significant digit. This algo-
rithm is deduced from the subresultant pseudo-remainder sequence algo-
rithm by applying a “stabilization process”, whose inspiration comes from
[6].

4.1. Crash course on ultrametric precision. In this subsection, we
briefly report on and complete the results of [6] where the authors draw
the lines of a general framework to handle a sharp (often optimal) track of
ultrametric precision. In what follows, the letter W still refers to a complete
DVR while the letter K is used for its fraction field.

4.1.1. The notion of lattice. As underlined in Remark 2.2, the usual way
of tracking precision consists in replacing elements of W — which cannot
fit entirely in the memory of a computer — by balls around them. Us-
ing this framework, a software manipulating d variables in W will work
with d “independant” balls. The main proposal of [6] is to get rid of this
“independance” and model precision using a unique object contained in
a d-dimensional vector space. In order to be more precise, we need the
following definition.

22 Xavier Caruso

Figure 3. Picture of a lattice in the ultrametric world

Definition 4.1. A W -lattice in a finite dimensional vector space E over
K is a W -submodule of E generated by a K-basis of E.

Although the definition of a lattice is similar to that of Z-lattice in Rd,
the geometrical representation of it is quite different. Indeed, the elements
of W themselves are not distributed as Z is in R but rather from a ball
inside K (they are exactly elements of norm ≤ 1). More generally, assume
that E is equipped with a ultrametric norm ‖ · ‖E compatible with that
on K (i.e. ‖λx‖E = |λ| · ‖x‖E for λ ∈ K, x ∈ E). (A typical example is
E = Kn equipped with the sup norm.) One checks that the balls

BE(r) =
{
x ∈ E

∣∣ ‖x‖E ≤ r }
are all lattices in E. Moreover, any lattice is deduced from BE(1) by ap-
plying a bijective linear endomorphism of E. Therefore, lattices should be
thought as special neighborhoods of 0 (see Figure 3). As a consequence,
cosets of the form x + H, where H is a lattice, appear as interesting can-
didates to model precision. This feeling is consolidated by the following
result which roughly speaking claims that such cosets behave quite well
under differentiable maps.

Lemma 4.2 ([6], Lemma 3.4). Let E and F be two normed finite dimen-
sional K-vector spaces. Let f : E → F be a function of class C1 and let
x be a point in Kn at which the differential of f , denoted by f ′(x), is sur-
jective. Then, for all ρ ∈ (0, 1], there exists δ > 0 such that the following
equality holds:

(4.1) f(x+H) = f(x) + f ′(x)(H)

for any lattice H satisfying BE(ρr) ⊂ H ⊂ BE(r) for some r < δ.

Numerical stability of Euclide algorithm over ultrametric fields 23

In what follows, we will often use Lemma 4.2 with ρ = 1. It states in
this particular case that

(4.2) f(x+BE(r)) = f(x) + f ′(x)(BE(r))

as soon as r is small enough. It is moreover possible to provide an explicit
upper bound on r assuming that f has more regularity. The case of locally
analytic functions is treated in [6] in full generality. Nevertheless, for the
application we have in mind, it will be enough to restrict ourselves to
the simpler case of integral polynomial functions. In order to proceed, we
assume that E is endowed with distinguished “orthonormal” basis4, that is
a basis (e1, . . . , en) with the property that ‖

∑n
i=1 xiei‖E = max1≤i≤n|xi| for

all families of xi’s lying inK. In other words, the choice of this distinguished
“orthonormal” basis defines a norm-preserving isomorphism between E and
Kn endowed with the sup norm. We assume similarly that we are given
a distinguished “orthonormal” basis (f1, . . . , fm) of F . Then any function
f : E → F can be written in our distinguished system of coordinates as
follows:

f(x) =
m∑
j=1

Fj(x1, . . . , xn)fj with x =
n∑
i=1

xiei.

Definition 4.3. The function f is integral polynomial if all Fj ’s are poly-
nomials functions with coefficients in W .

Example 4.4. Let us examine more closely the case of polynomial spaces
since it will be considered repeatedly in the sequel. We take E = K<n[X]
and F = K<m[X] and endow both with the Gauss norm, which is defined
by:

‖a0 + a1X + · · ·+ an−1X
n−1‖E = max

(
|a0|, |a1|, . . . , |an−1|

)
‖b0 + b1X + · · ·+ bm−1X

m−1‖F = max
(
|b0|, |b1|, . . . , |bm−1|

)
It is clear from these definitions that the canonical basis (1, X, . . . ,Xn−1)
and (1, X, . . . ,Xm−1) of E and F respectively are “orthonormal”. Moreover
the coordinates in these basis are the ai’s and the bi’s respectively. Hence,
an integral polynomial function f : E → F is nothing but a function
mapping a polynomial P to a polynomial Q whose coefficients are given by
polynomial expressions which involve only the coefficients of P and some
constants in W .

Obviously, all integral polynomial functions are function of class C1 (and
even locally analytic), so that Lemma 4.2 applies to them. Proposition 4.5
below exhibits an explcit value for the bound δ appearing in Lemma 4.2
when f is integral polynomial and r = 1.

4One can prove that such a basis always exists.

24 Xavier Caruso

Proposition 4.5. Let f : E → F be an integral polynomial function and
x ∈ BE(1). Then, Eq. (4.2) holds as soon as BF (r) ⊂ f ′(x)(BE(1)).

Proof. It is a direct corollary of [6, Proposition 3.12]. �

4.1.2. Application to precision. Let us now briefly explain how Lemma 4.2
can be utilized for tracking precision.

Tracking precision locally. Assume first that we want to perform a given
rather simple operation — corresponding, say, to an elementary step (e.g.
an iteration of the main loop) of the algorithm we are executing — mod-
eled by a function g of class C1 defined on an open subset U of a finite
dimensional normed K-vector space E and taking values in another finite
dimensional normed K-vector space F . Our input is an approximated ele-
ment of U which is represented by a coset C with respect to some lattice
H, that is a subset of U of the form C = x+H for some x ∈ U . We would
like to insist on the following: the value of x is a priori not given; only
is given the subset C. However, since H is stable under addtion, we have
C = x+H for any element x ∈ C.5 As explained in §2.1.2, assuming that
g is given as an algebraic expression, the naive solution for evaluating g(C)
consists in using formulae (2.5)–(2.8). However, this often results in an
overestimation on the precision, in the following sense: this method leads
to some inclusion

g(C) = g(x+H) ⊂ y +Hnaive

where y ∈ F and Hnaive is a lattice which is generally much more larger that
g′(x)(H), the latter being the best possible one according to Lemma 4.2
(assuming that the assumptions of this Lemma are fullfiled). In order to
avoid this and be sharp on precision, another solution consists in splitting
the computation of g(C) into two parts as follows:

(A) compute g′(x)(H), and
(B) compute g(x) for some x ∈ C.

Part (A) is not easy to handle in full generality: in order to be efficient,
a special close analysis taking advantage of the particular problem under
consideration is often necessary. For now, let us simply assume that we are
given two lattices Hmin and Hmax with the property that:

(4.3) Hmin ⊂ g′(x)(H) ⊂ Hmax.

We shall see later (cf §4.2) how these lattices can be constructed — for a
negligible cost — in the special case of subresultants.

We now focus on part (B), which also requires some discussion. Indeed,
computing g(x) is not straightforward because x itself lies in a K-vector

5This assertion means that any element of the “rectangle” C is a center of it... which might
be surprising if we are accustomed to real numbers.

Numerical stability of Euclide algorithm over ultrametric fields 25

g
x+H

x+H ′

g(x)+Hmax

g(x)+

g′(x)(H)

g(x)+Hmin

y+H ′naive

Figure 4. Method for tracking precision based on Lemma 4.2

space and therefore cannot be stored and manipulated on a computer. Nev-
ertheless, one can take advantage of the fact that x may be chosen arbi-
trarily in C. More precisely, we pick a sublattice H ′ of H and consider the
new approximated element x + H ′ ⊂ x + H. Concretely, this means that
we arbitrarily increase the precision on the given input x. Now, applying
the naive method with x + H ′, we compute some y ∈ F and some lattice
H ′naive ⊂ F with the property that:

g(x+H ′) ⊂ y +H ′naive.

If furthemore H ′ is chosen in such a way that H ′naive ⊂ Hmin, the two
cosets y + g′(x)(H) and g(C) have a non-empty intersection because g(x)
lies in both. Therefore they must coincide. We deduce that y ∈ g(C).
This exactly means that y is an acceptable value for g(x) and we are done.
Moreover, estimating the dependance of H ′naive in terms of H ′ is usually
rather easy (remember that g is supposed to model a simple operation).
Hence since Hmin is known — as we had assumed — finding H ′ satisfying
the required assumption is generally not difficult.

Tracking precision globally. As already said, we shall use the above method
for tracking precision while executing a single step in a complete algorithm.
Let us now address the problem of “glueing”. We consider an algorithm F

consisting in a succession of n steps G0, . . . , Gn−1. It is modeled by a function
f : U → F of class C1 where U is an open subset in a finite dimensional
normed K-vector space E and F is a finite dimensional normed K-vector
space. The input of F is an approximated element in U represented as

26 Xavier Caruso

a coset C = x + H where x ∈ U and H is a lattice. We also introduce
notations for each individual step. For all i, we assume that Gi is modeled
by a function gi : Ui → Ui+1 of class C1 where Ui is an open subset is
some normed K-vector space Ei and, by convention, U0 = U , E0 = E and
Un = En = F . We thus have:

f = gn−1 ◦ gn−2 ◦ · · · ◦ g1 ◦ g0.

For all i, we set fi = gi−1◦· · ·◦g0. It is the function modeling the execution
of the i first steps of our algorithm. We further define xi = fi(x) and
Hi = f ′i(x)(H). The chain rule for composing differentials readily implies
the recurrence

(4.4) Hi+1 = g′i(xi)(Hi)

For simplicity, we make the following assumptions:

• the Zp-submodule Hi is a lattice in Ei such that xi +Hi ⊂ Ui;
• the triple (gi, xi, Hi) satisfies the assumptions of Lemma 4.2;
• for all i, we have succeeded in finding (good enough) explicit lattices
Hmin,i and Hmax,i such that Hmin,i ⊂ Hi ⊂ Hmax,i;
• for all i, we have succeeded in finding an explicit lattice H ′i such that,

while tracking naively precision, we end up with an inclusion

gi(xi +H ′i) = xi+1 +Hnaive,i+1

with Hnaive,i+1 ⊂ Hmin,i+1.

We note that the first and the second assumptions are quite strong be-
cause they imply in particular that the sequence of dimEi is non-increasing.
However, it really simplifies the forthcoming discussion and will be harm-
less for the application developed in this paper. As already mentionned,
the construction of Hmin,i and Hmax,i will generally follow from a theoret-
ical argument depending on the setting, while exhibiting H ′i will often be
straightforward. Anyway, we are now in position to apply the method for
tracking precision locally we have discussed earlier to all gi’s. This leads
to a stabilized version of the algorithm F whose skeleton is depicted in
Algorithm 3.

The correctness of Algorithm 3 (under the assumptions listed above) is
clear after Lemma 4.2.

4.2. Application to subresultants. We now apply the theory presented
in §4.1 above to the problem of computing subresultants, i.e. the abstract
Algorithm F is now instantiated to Algorithm 2. We split this algorithm
into steps in the obvious manner, each step corresponding to an iteration
of the main loop. We thus consider the functions:

Numerical stability of Euclide algorithm over ultrametric fields 27

Algorithm 3: Stabilized version of F

Input : x given at precision O(H)
Output: f(x) given at precision O(Hmax,n)

1 x0 ← x

2 for i = 0, . . . , n− 1 do
3 lift xi to precision O(H ′i)

4 xi+1 ← Gi(xi)

5 return xn +O(Hmax,n)

gd : Kd[X]×Kd[X] → Kd[X]×K≤d−1[X]

(A,B) 7→ (B,A−B)

and gj : K≤j+1[X]×K≤j [X] → K≤j [X]×K≤j−1[X]

(Rj+1, Rj) 7→ (Rj , Rj−1)

where Rj−1 is defined as usual by Rj−1 = r2
j · r

−2
j+1 · (Rj+1 %Rj) where

rj (resp. rj+1) stands for the coefficient of degree j in Rj (resp. of degree
j+1 in Rj+1). We remark that gj is only defined on the subset consisting of
pairs (Rj+1, Rj) for which Rj+1 has degree j + 1; this reflects the fact that
Algorithm 2 fails on inputs for which at least one principal subresultant
vanishes. The composite function f = g1 ◦ · · · ◦ gd (be careful with the
order of the indices) models (a slight variant of) Algorithm 2. For all j, we
put fj = gj+1 ◦ · · · ◦ gd; it is the function:

fj : Kd[X]×Kd[X] → K≤j [X]×K≤j−1[X]

(A,B) 7→ (Resj(A,B),Resj−1(A,B)).

For simplicity, we assume in addition that the precision on the input
(A,B) is flat, meaning that all coefficients of A and B are known with the
same absolute precision N . In the language of §4.1, this flat precision cor-
responds to the lattice H = πNL where L = W<d[X]×W<d[X] is the unit
ball in Kd[X] ×Kd[X] with respect to the Gauss norm (cf Example 4.4).
Following §4.1, our first task consists in finding two lattices Hmin,j and
Hmax,j having the property that Hmin,j ⊂ f ′j(A,B)(H) ⊂ Hmax,j .

Lemma 4.6. For all (A,B) ∈ Kd[X]2, we have:

r2
j · Lj ⊂ f ′j(A,B)(L) ⊂ Lj

where rj is the j-th principal subresultant of (A,B) and Lj = W≤j [X] ×
W≤j−1[X] is the unit ball in K≤j [X]×K≤j−1[X].

28 Xavier Caruso

Proof. The second inclusion is clear because fj is a polynomial function.
Let us prove the first inclusion. One may of course assume that rj does
not vanish, otherwise there is nothing to prove. Now, we remark that fj
factors through the function ψj introduced in §3.3. By continuity, the j-
th principal subresultant function does not vanish on a neighborhood of
(A,B). By Proposition 3.8, ψj is injective on this neighborhood. Therefore
so is fj . Furthermore, a close look at the proof of Proposition 3.8 indicates
that a left inverse of fj is the function mapping (Sj , Sj−1) to

(−1)j · r−2
j · (VjSj−1−Vj−1Sj , −UjSj−1+Uj−1Sj)

where Uj , Vj (resp. Uj−1, Vj−1) are the j-th (resp (j − 1)-th) cofactors of
(A,B). Differenting this, we get the announced result. �

Lemma 4.6 ensures that one can safely take Hmin,j = r2
j · πNLj and

Hmax,j = πNLj . It finally remains to construct the lattice H ′j ⊂ K≤j [X]×
K≤j−1[X]. For this, we remark that a naive track of precision leads to
a loss of at most 2 · val(rj+1) digits while executing the step Gj (see also
proof of Proposition 3.2 for similar considerations). Therefore, one can take
H ′j = r2

j r
2
j+1 · πNLj . Instantiating Algorithm 3 in this particular case, we

end up with Algorithm 4 below which then appears as a stable version of
Algorithm 2.

Algorithm 4: Stabilized version of Algorithm 2

Input : Two polynomials A,B ∈ Kd[X] given at flat precision O(πn)
Output: The sequence of subresultants of A and B given at flat

precision O(πn)

1 Rd ← B; rd ← 1

2 Rd−1 ← B −A
3 for j = (d− 1), (d− 2), . . . , 1 do
4 rj ← coefficient in Xj of Rj
5 if val(rj) ≥ N

2 then raise NotImplementedError

6 lift (Rj+1, Rj) at precision O(πN+2val(rj)+2val(rj+1)))

7 Rj−1 ← prem(Rj+1, Rj)/r
2
j+1

8 return Rd−1 +O(πN), . . . , R0 +O(πN)

Proposition 4.7. Algorithm 4 computes all subresultants of (A,B) at pre-
cision O(πN) under the following assumption6

(H): all principal subresultants of (A,B) do not vanish modulo πN/2.

6If this assumption is not fullfiled, the algorithms fails and returns an error.

Numerical stability of Euclide algorithm over ultrametric fields 29

It runs in O(d2 · M(N + max(V0, . . . , Vd−1)) bit operations where Vj denotes
the valuation of rj and M(n) is the number of bit operations needed to per-
form an arithmetic operation (addition, product, division) in W at precision
O(πn).

Remark 4.8. In all usual examples (p-adic numbers, Laurent series), one
can choose M(n) to be quasi-linear in n and the size of the residue field k.

Proof. Correctness has been already proved (the assumption (H) ensures
that Proposition 4.5 applies to each gj). As usual Euclide’s algorithm, Algo-
rithm 1 requires O(d2) operations in the base ring W . Moreover, we observe
that the maximal precision at which we are computing is upper bounded
by N + 2max(V0, . . . , Vd−1). This justifies the announced complexity. �

According to Corollary 3.6, the expected value of max(V0, . . . , Vd−1) is
in O(logp d). Thus, the average complexity of Algorithm 1 is

O(d2 · M(N + log d))

bit operations. In all usual cases (cf Remark 4.8), this complexity is also

Õ(d2N · log |k|) bit operations.
To conclude with, let us comment on briefly the hypothesis (H). We

first remark that it is satisfied with high probability if N is large compared
to 2 · logd p. Thus, replacing if necessary N by 3 · logd p (which does not
affect the complexity), it is harmless on average — but might be not on
particularly bad instances. We moreover underline that, if we are just
interested in computing the j-th subresultant for a particular j, then we
just need to assume the non-vanishing of the principal subresultants in the
range [j + 1, d− 1].

Open questions. The first hypothesis we would like to relax is of course (H).
Actually, it seems quite plausible that one can produce a stabilized version
of the “complete”7 subresultant pseudo-remainder sequence algorithm fol-
lowing the same strategy. Nevertheless, this extension is not completely
straightforward because designing it requires to understand precisely how
the coefficients ci’s (appearing in Eq. 2.9) alter the behaviour of the preci-
sion. We therefore let it as an open question.

As it was presented, Algorithm 4 only accepts inputs consisting of a pair
of monic polynomials having the same degree. It is actually not difficult
to make it work with all couples of polynomials (A,B) such that lc(B) is
invertible in W and degA ≥ degB. Indeed, it is enough for this to replace
line 2 by:

Rd−1 ← (−1)degA−degB(A%B).

7I.e. dealing with abnormal sequences as well.

30 Xavier Caruso

However, writing an extension of Algorithm 4 that accepts all inputs seems
much more tricky and this is the second open question we would like to
point out.

Beyond this, one may wonder if one can use similar technics to compute
not only subresultants but cofactors as well. For those indexes j such that
rj is invertible in W , the same analysis applies almost verbatim. However
for other indexes j, the differential computation seems to be much more
subtle. One can get around this issue by using lifting technics only when
rj is a unit in W and tracking precision naively otherwise: it is possible to
get this way a stable algorithm whose average running time is acceptable
but which seems to be bad in the worst case. Can we do better?

Another quite interesting question is that of designing an algorithm
which combines the precision technology developed in this paper with the
“half-gcd” methods. It is actually closely related to the previous question
because “half-gcd” methods make an intensive use of cofactors in order to
speed up the computation.

5. Conclusion: towards p-adic floats

When computing with real numbers, computers very often use floating
point arithmetic. The rough idea of this model consists in representating all
real numbers using the same number of digits (the so-called precision) and
to apply rounding heuristics when final digits are unsettled. In comparison
with arithmetic interval, floating point arithmetic has two main advantages.
First, it allows simple and fast implementations. Second, experiments show
that the obtained results have generally more much correct digits than the
number predicted by arithmetic interval. The counterpart is that, except
on small examples, obtaining proved results is often quite difficult and even
sometimes intractable.

In the p-adic setting, the analogue of floating point arithmetic has not
been developed yet. One reason for this is probably the well-known say-
ing: “in the p-adic world, rounding errors do not accumulate”. Conse-
quently one might expect that interval arithmetic would provide sharp re-
sults. Nonetheless this hope is failing and examples are basic and numer-
ous: p-adic differential equations [4, 10], LU factorization [7], SOMOS 4
sequence [6], resultants (this paper), etc. Consequently, interval arithmetic
is not as good as one might have expected at first. Therefore, it probably
makes sense to seriously study the analogue of floating point arithmetic in
a ultrametric context.

Let us describe quickly what might be this analogue and what are its ad-
vantages and disadvantages. We keep the notations of the previous sections:
the letter W denotes a complete discrete valuation ring with uniformizer π

Numerical stability of Euclide algorithm over ultrametric fields 31

and K is its fraction field. In the model of ultrametric floating point arith-
metic, we fix a positive integer N (the precision) and represent elements of
K by approximations of the form:

(5.1) πe ·
N−1∑
i=0

xiπ
i

where e is a relative integer and the xi’s are elements of a fixed set of
representatives of W modulo π with the convention that the representative
of 0 ∈ k is 0 ∈ W . We further assume that x0 6= 0, i.e. e is the valuation
of the sum (5.1). We see that this framework is quite similar to usual
floating point arithmetics: the integer e plays the role of exponent, the
uniformizer π plays the role of the basis and the value

∑N−1
i=0 xiπ

i plays
the role of the significand (the mantissa). It remains to define operations
⊕ and � on approximations modeling addition and multiplication on K
respectively. We do this as follows: given x and y two elements of K of the
form Eq. (5.1), we compute x+y (resp. xy) in K, expand it as a convergent
series

∑∞
i=v siπ

i (with sv 6= 0) and define x⊕ y (resp. x� y) by truncating
the series at i = v +N .

Similarly to real floating point arithmetic, the main advantages of ul-
trametric floating point arithmetic are the simplicity and the efficiency
while the counterpart is the difficulty to get proved results. Moreover,
the aforementioned examples are evidences that ultrametric floating point
arithmetic may often compute much more correct digits than the number
predicted by a naive analysis based on interval arithmetic. In order to il-
lustrate this last assertion, let us go back to the case of resultants discussed
earlier in this paper. Let A and B be two monic polynomials of degree d
(picked at random) whose coefficients are all known at precision O(πN). We
have proved that if we are using the model of interval arithmetic, then the
subresultant pseudo-remainder sequence algorithm will output Res(A,B)
at precision O(πN−Nint) where Nint grows linearly with respect to d on
average. On the other hand, if we are using ultrametric floating point
arithmetic, then the same algorithm will output Res(A,B) at precision
O(πN−Nfloat) where Nfloat grows linearly with respect to log d on average.
We emphasize furthermore that this result is proved ! From this point of
view, floating point arithmetics seems to behave better in the ultrametric
setting: we may hope to get proved results relatively cheaply.

Bibliographie

[1] G. Andrews, The Theory of Partitions, Cambridge University Press (1976)
[2] S. Basu, R. Pollack, M.-F. Roy Algorithms in Real Algebraic Geometry, Springer-Verlag

(2008), second edition

[3] C. Batut, K. Belabas, D. Benardi, H. Cohen, M. Olivier, User’s guide to PARI-GP (1985–
2013)

32 Xavier Caruso

[4] A. Bostan, L. González-Vega, H. Perdry, É. Schost, From Newton sums to coefficients:

complexity issues in characteristic p, MEGA’05 (2005)
[5] W. Bosma, J. Cannon, C. Payoust, The Magma algebra system. I. The user language. J.

Symbolic Comput. 24 (1997), 235–265

[6] X. Caruso, D. Roe, T. Vaccon, Tracking p-adic precision, LMS J. Comp. and Math. 17,
274–294

[7] X. Caruso, Random matrices over a DVR and LU factorization, J. Symb. Comp. 71, 98–123
[8] H. Cohen, A course in Computational Algebraic Number Theory, Springer (1996)

[9] K. Kedlaya, Counting points on hyperelliptic curves using Monsky–Washnitzer cohomology,

J. Ramanujan Math. Soc. 16 (2001), 323–338
[10] P. Lairez, T. Vaccon, On p-adic differential equations with separation of variables, preprint

(2016)

[11] W. Stein et al. Sage Mathematics Software, The Sage Development Team (2005–2013)
[12] F. Winkler, Polynomial Algorithms in Computer Algebra, Springer Wien New Work (1996)

Xavier Caruso

Université Rennes 1, IRMAR, 35042 Rennes Cedex
France

E-mail : xavier.caruso@normalesup.org

URL: http://perso.univ-rennes1.fr/xavier.caruso

	1. Introduction
	2. The setting
	2.1. Complete discrete valuation rings
	2.2. Subresultants

	3. Unstability of Euclide-like algorithms
	3.1. A lower bound on losses of precision
	3.2. Behaviour on random inputs
	3.3. Proof of Theorems 3.3 and 3.5

	4. A stabilized algorithm for computing subresultants
	4.1. Crash course on ultrametric precision
	4.2. Application to subresultants

	5. Conclusion: towards p-adic floats
	toBibliographie

