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Abstract

We present the first implementation of Drinfeld modules fully integrated in the SageMath ecosystem.
First features will be released with SageMath 10.0.

The pursuit of Class Field Theory has been a long-standing
dream, once held by Kronecker himself. In 1854, he made a sig-
nificant contribution to the field with the announcement of the
Kronecker-Weber theorem, which states that every abelian num-
ber field can be generated by a cyclotomic extension ofQ. Sim-
ilarly, extensions of imaginary quadratic number fields can be
described using a so-called Hilbert class field [CLRS09]. Many
important results of the field were conjectured by Hilbert and Kro-
necker. Some of them were only proven in the twentieth century,
by mathematicians like Takagi, Artin, and Chevalley [CLRS09].
And to this day, the general quest for describing extensions of a
number field remains elusive. But what if the quest was easier for
function fields?

In 1974, Drinfeld introduced the now-known Drinfeld mod-
ules [Dri74], pursuing the ideas of Carlitz [Car35]. With Drin-
feld modules, one can develop an explicit class field Theory for
function fields: every Drinfeld module can be assigned a rank;
cyclotomic function fields are generated by torsion spaces of rank
1 Drinfeld modules and j-invariants of rank 2 Drinfeld intervene
in the construction of the function-field analogue of the Hilbert
class field. Later developments saw Drinfeld modules being in-
strumental in Lafforgue’s proof of some of Langlands conjectures
for function fields [Laf02]. The analogue question for number
fields is still out of reach.

In the recent years, purely algorithmic thesis [Car18] and pa-
pers [CGS20, MS19, MS23, LS22] have been published, empha-
sizing efficiency. The present implementation began as the need
for a unified and tangible manipulation tool, which we hope
will be useful to a large community. We made notable efforts
to accompany the code with exemplary documentation and use
pre-existing SageMath facilities wherever possible. Our three core
principles were reliability, user interface elegance, and integration.
The original ticket (see Github pr #35026) was opened in April
2022 and merged in March 2023. Many pull requests have since
been proposed to enhance the capabilities of the original contribu-
tion and are under active development, fueling an ever-growing
interest in Drinfeld modules.

Mathematical background. Before entering into the core of
this presentation, we need to recall basic definitions related to
Drinfeld modules. Let Fq be a finite field with q elements, let K
be an extension of Fq and let K be an algebraic closure of K . Ad-
ditionally, we equip K with a structure of Fq [T ]-field, meaning
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we give ourselves a morphism of Fq-algebras γ : Fq [T ] → K . We
use the notation τ to denote theFq-linear endomorphism ofK de-
fined by x ↦→ xq. We define the ring of Ore polynomials K{τ} as
the ring whose elements are sum of the form a0 +a1τ + · · · +anτn
where n ∈ Z⩾0 and ai ∈ K for all 0 ⩽ i ⩽ n. In K{τ}, we have
the identity τa = aqτ whenever a ∈ K .

A Drinfeld module over K is a morphism of Fq-algebras ϕ :
Fq [T ] → K{τ} such that ϕ(T ) has constant coefficient γ(T )
and nonzero degree in τ. We remark thatϕ(T ) entirely determines
ϕ; we often denote it simply by ϕT . The name module comes
from the fact that ϕ endows K with an action of Fq [T ], defined
by a·x = ϕ(a) (x) for all a in Fq [T ] and x in K .

Given two Drinfeld modules ϕ, ψ , a morphism ϕ → ψ is an
Ore polynomial u ∈ K{τ} such that uϕT = ψTu. An isogeny is a
nonzero morphism.

1 Implementation choices
When we started this project, our objective was to provide a gen-
eral well-documented package for Drinfeld modules, intended to
the working mathematician in the domain. Our main concern
was then to develop a software with an easy-to-use interface, im-
plementing all the basics of the theory and not focussing on a
particular application.

1.1 Why SageMath? We choose to implement our package in
SageMath for several reasons. Firstly, SageMath is a mathemati-
cal computational tool built on top of the widely-used Python
programming language. As a free and open source software, it
benefits from contributions from mathematicians with different
backgrounds. With its general design philosophy, it also accom-
modates a vast range of mathematical domains. SageMath thus
appeals to a large audience, and then meets our idea of providing
tools to all the community of mathematicians working with Drin-
feld modules. Secondly, SageMath looks particularly adapted to
our project since it already implements two important primitives
for us, namely:
1. the ring of Ore polynomials, with many additional function-

alities when the base ring is a finite field,
2. a framework for manipulating ring extensions (which is useful

to us because we need to view K as a Fq [T ]-algebra).

After we made this choice, we prioritized careful integration
within the ecosystem of SageMath. This forced us to be very
rigourous and we benefited a lot from the feedback of the Sage-
Math’s core developers; in particular, throughout the develop-
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ment of the project, we were constantly very careful to the sim-
plificity of the interface, the clarity and the completeness of the
documentation and the unit tests. Concretely, each class, method
or function is augmented with a doctest that has description, tests
and examples. The entry point of the documentation is the doc-
string of DrinfeldModule, accessed in the SageMath console by
running DrinfeldModule?. For specific methods, the ? keyword
is also used, e.g. phi.rank?. The documentation also appears in
the SageMath Reference Manual [Dev].

Our library is completely open and as such, we encourage all
mathematicians and computer scientists to improve it with any
contribution that may interest them.

1.2 The base type of Drinfeld module objects. A first dif-
ficulty we encoutered at the very beginning of the project was
that a Drinfeld module is not an actual module in the classical
sense. In particular, a Drinfeld module has no underlying set and a
morphism between Drinfeld modules is not a set-theoretical map.
However, in the SageMath idiom, most objects are either sets
with additional structures — a so-called Parent — or elements
in such sets — an Element. This philosophy is referred to as the
parent/element framework. It is often implicitely assumed in Sage-
Math. For example, the default Test Suite of a parent checks that
its category is a subcategory of Sets, the constructor of Morphism
objects assume that the domain and codomain are both parents,
etc. For Drinfeld modules, this raises many questions and we even-
tually had to make a difficult choice between the three following
compromises:

1. Making Drinfeld modules elements (as they are in fine mor-
phisms) and their set a parent (the so-called “homsets” in Sage-
Math); this option offers a standard parent/element frame-
work.

2. Implementing Drinfeld modules as parents without elements,
following actually the implementation of elliptic curves1. This
option makes the implementation of morphisms between
Drinfeld module (and, more generally, of the category of Drin-
feld modules) easier. Besides, making in some sense Drinfeld
modules as function field analogues of elliptic curve, this op-
tion has a strong mathematical base.

3. Implementing Drinfeld modules as CategoryObject. This
class does exist in SageMath and it is not expected to have
elements. However, unfortunately, it is used only sporadically,
it is currently incompatible with Morphism objects and it is
no longer maintained (it is possibly intended to disappear
eventually).

All these options have their benefits and drawbacks. We dis-
cussed all of them with the SageMath core developers (see Github
pr #37313 and Github pr #34534). At some point, the third option
looked to us the most mathematically appealing; however given
that CategoryObjects are not fully supported, we decided to
rule out this possibility. On the other hand, the first option seems
more practical but we believed that it was too mathematically mis-
leading; it would also require a workaround to make morphisms
work. We then ultimately chose the second option.

1In SageMath, elliptic curves E are schemes, and E.an_element() return an
element whose parent is not E, but the group G of points of E. In that case, G and
E are distinct objects.

2 Overview of our package
Our package is publicly available on Github: https://github.
com/xcaruso/sage/tree/drinfeld-modules. It is intended
to be ultimately included in the standard distribution of Sage-
Math. Actually, about half of the package will be released with
SageMath 10.0, the other half is still under review; we hope that it
will be approved soon by the SageMath community.

Alternatively, we offer the possibility to try our pack-
age online on the platform plm-binder. For this, please
go to the URL https://caruso.perso.math.cnrs.fr/
notebook/drinfeld-modules; after a few seconds, a Jupyter
notebook will open with a full tutorial presenting the main func-
tionalities of our package. Beyond reading the tutorial, plm-
binder allows for editing the notebook, executing commands,
creating new worksheets, etc. Be careful however that your modi-
fications will not be stored after your session is closed; if you want
to keep them, do not forget to download your notebooks!

2.1 Construction and basic properties. A Drinfeld module
is a rather sophisticated mathematical object, whose definition
already involves several nontrivial ingredients: a morphism γ :
Fq [T ] → K , the ring of Ore polynomials K{τ}. In our package,
we have tried as much as possible to minimize the number of lines
for creating a Drinfeld module. In particular, in most cases, it is
not needed to define explicitely γ and K{τ}.

sage: K.<w> = GF(4)
sage: phi = DrinfeldModule(GF(2)[’T’], [w, 0, 0, 1])
sage: phi
Drinfeld module defined by T |--> t^3 + w

Once a Drinfeld module is instantiated, we have access to a
panel of methods for accessing its most important invariants, e.g.
phi.characteristic(), phi.rank(), phi.height(), etc. It is
also also possible to compute the value ϕ(a) by simply using the
syntax phi(a).

2.2 Morphisms and isogenies. Given that Drinfeld modules
do not have elements, the morphisms between them are the main
tools at our disposal for understanding their structure. Our pack-
age provides the method hom for easily constructing morphisms.

sage: t = phi.ore_variable()
sage: phi.hom(t + w)
Drinfeld Module morphism:
From: Drinfeld module defined by T |--> t^3 + w
To: Drinfeld module defined by T |--> t^3 + t^2 +

w*t + w
Defn: t + w

We observe that the software has automatically determined
the codomain. Once we have constructed a morphism
f , many methods become available, e.g. f.codomain(),
f.is_isomorphism(), etc. At the level of Drinfeld modules
themselves, the method is_isomorphic allows for checking
whether two Drinfeld modules are isomorphic. When K is fi-
nite, a very important morphism is the Frobenius endomorphism
defined by the Ore polynomial τ [K :Fq ] (see also §2.4). Our pack-
age provides the method phi.frobenius_endomorphism() for
rapidly instantiating it.
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Of course, addition and composition of morphisms are imple-
mented, as well as inverse of isomorphisms. We observe in addi-
tion that any polynomial P ∈ Fq [T ] defines an endomorphism
of ϕ (corresponding to the Ore polynomial ϕP). In particular, the
Hom spaces Hom(ϕ, ψ) inherits a structure of left module over
Fq [T ], which is accessible in our package via the operator *. This
simple syntax allows for writing down easily complex formulas.

Finally, in contrast to the case of elliptic curves, computing
morphisms between Drinfeld modules defined over finite fields
amounts to solving a linear system over Fq. This leads to an ef-
ficient algorithm for finding isogenies [Wes22], which we imple-
mented in our package.

sage: psi = DrinfeldModule(GF(2)[’T’], [w, w+1, 1, 1])
sage: Hom(phi, psi).an_isogeny()
Drinfeld Module morphism:
From: Drinfeld module defined by T |--> t^3 + w
To: Drinfeld module defined by T |--> t^3 + t^2 +

(w + 1)*t + w
Defn: t^2 + (w + 1)*t + 1

The command Hom(phi, psi).basis(degree=d) returns
more generally an Fq-basis of the vector space of morphisms be-
tween ϕ and ψ defined by an Ore polynomial of degree at most d.

2.3 j-invariants. In the classical theory, it is well known that
elliptic curves over an algebraically closed field are classified, up
to isomorphisms, by their j-invariants [Sil09, Proposition 1.4].
Moreover, when working over a quadratic imaginary field R, the
j-invariants of elliptic curves with complex multiplication by R
provide an explicit description of abelian extensions of R [Sil94,
Chap. II]. Similar results hold for Drinfeld modules: one can
attach to any Drinfeld module ϕ of rank 2 a j-invariant which
determines the isomorphism class of ϕ over an algebraic closure;
besides, certain j-invariants play a pivotal role in the study of
certain algebraic extensions of Fq (T ) [Gek83, (4.4)], [Ham03,
Theorem 6.9].

The j-invariant of a Drinfeld module of rank 2 is given by a
simple closed formula: if ϕT = γ(T ) + g1 (ϕ)τ + g2 (ϕ)τ2, then
j(ϕ) := g1 (ϕ)q+1/g2 (ϕ). This makes it easy to compute and our
package provides a direct method for accessing it.

sage: phi = DrinfeldModule(GF(2)[’T’], [w, w+1, w+2])
sage: phi.j_invariant()
w + 1

In the context of Drinfeld modules, it turns out that j-invariants
are defined in any rank [Pot98]. A Drinfeld module of rank r >
2 does not have a single j-invariant but a complete family of
j-invariants indexed by the integral points of a convex sub-
set of Rr . Fortunately, those j-invariants are still given by ex-
plicit closed formulas, making their computation possible. Our
package provides methods (basic_j_invariant_parameters,
basic_j_invariants, jk_invariants, etc.) for computing
and manipulating those j-invariants in any rank. We refer to our
tutorial on plm-binder for more details.

2.4 Norms and characteristic polynomials. In the classi-
cal setting, morphisms (resp. endomorphisms) between elliptic
curves have norms (resp. characteristic polynomials) which can
be found by looking at the action on the Tate module [Lor96,

§5]. Again, similar facts hold true in the Drinfeld setting [Gek91,
Lem. 3.10]: there is a well-defined notion of Tate module of a
Drinfeld module and morphisms between Drinfeld modules do
induce linear transformations of the associated Tate modules.
From this construction, one can define the norm of a general
isogeny and the characteristic polynomial of an endomorphism.
Unfortunately, computing in practice the Tate module is a hard
task in general given that the latter usually lives in a quite large ex-
tension ofK . Norms and characteristic polynomials have however
alternative interpretations, which makes tangible the perspective
of computing them efficiently. Concretely, algorithms for this
task based on the notion of Anderson motives [And86] have been
designed in [CL23]. We implemented them in our package; they
are available through the methods norm and charpoly.

When K is finite, a distinguished endomorphism of a Drinfeld
module ϕ is its Frobenius endomorphism. Its characteristic poly-
nomial plays a prominent role in the theory; notably, it entirely
determines the isogeny class of ϕ [Gek91, Th. 3.5]. In our package,
we implemented three different algorithms for computing this
invariant, namely:
• the motive algorithm, based on Anderson motives as already

discussed above,
• the crystalline algorithm [MS23], based on the action of

the Frobenius on the crystalline cohomology,
• the CSA algorithm [CL23], based on a reinterpretation of the

characteristic polynomial of the Frobenius as a reduced norm
in some central simple algebra.

Figure 1 (on page 4) compares the timings of our three algorithms2

depending on the rank of the Drinfeld module and the degree
of the extension K/Fq (with q = 5 in our example). We observe
that the CSA algorithm performs better when the rank is large,
whereas the crystalline algorithm is the best when [K : Fq]
is large. The method frobenius_charpoly, which is the entry
point for this task in our package, is tuned for choosing by itself
the best available algorithm depending on the input; the user can
nevertheless require the use of a specific algorithm by passing in
the keyword algorithm.

As a byproduct of this computation, we implemented a
method is_isogenous which checks whether two given Drin-
feld modules are isogenous.

2.5 Exponential and logarithm. A quite important perspec-
tive on Drinfeld modules is the analytic point of view. To explain
it, let us go back to the case of elliptic curves: we know that an
elliptic curve E overC is uniformized by a free Z-submodule inC
of rank 2, i.e. E(C) � C/Λ as complex Lie groups [Sil09, VI §5].
In the Drinfeld setting, a similar result holds after replacing the
fieldC byC∞, the completion for the valuation associated to 1

T of
an algebraic closure of Fq (( 1

T )) [Gos96, Theorem 4.6.9]. In this
situation, the uniformization is obtained via aFq-linear, surjective
and nonconstant function eϕ : C∞ → C∞ called the exponential
of the Drinfeld module ϕ. The exponential may be represented

2There is still some place for optimization, here. Indeed, the three algorithm
rely eventually to the computation of the characteristic polynomial of an actual
matrix with coefficients in K [T ]. For this task, we just called the charpoly func-
tion of SageMath which, unfortunately, implements a slow generic algorithm
with quartic complexity. Nevertheless, we believe that Figure 1 is meaningful in
the sense that the comparison between timings are relevant.
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Figure 1: Timings for the computation of the characteristic polynomial of the Frobenius endomorphism
(CPU: Intel Core i5-8250U at 1.60GHz — OS: Ubuntu 22.04.1)

by a power series

eϕ (z) = z +
∑︁
i⩾1

αizq
i

for αi ∈ C∞ and z ∈ C∞. The logarithm of ϕ, denoted logϕ is the
compositional inverse of the exponential. We refer the reader to
chapter 4 of [Gos96] for more details. In our implementation,
any Drinfeld module possesses the methods exponential and
logarithm which compute power series approximation of eϕ
and logϕ respectively. The code computes the power series lazily,
meaning that any coefficient is computed on demands and the
user does not need to input any precision parameter.
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1 Construction and basic properties

1.1 Definitions

Let Fq denote a finite field with q elements. We consider a Fq-algebra A and an A-algebra K.
We denote by γ : A→ K the defining morphism of K.

Let also K{τ} denote the ring of skew polynomials over K in the variable τ , that is the ring of
usual polynomials with multiplication twisted by the rule

τa = aqτ, ∀a ∈ K.

By definition, a A-Drinfeld module is a ring homomorphism ϕ : A→ K{τ} such that

• for all a ∈ A, the constant coefficient of ϕ(a) is γ(a),

• for all a ∈ A, a ̸∈ Fq, the skew polynomial ϕ(a) has positive degree.

We often write ϕa instead of ϕ(a).

In what follows, we will only consider the case where A = Fq[T ] (our implementation is limited
to this setting so far) and will simply say Drinfeld module instead of Fq[T ]-Drinfeld module. We
remark that a Drinfeld module ϕ is entirely defined by the datum of ϕT .

1.2 Construction in SageMath

We first define Fq, A and K.

1
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[1]: Fq = GF(5)
A.<T> = Fq[]
K.<z> = Fq.extension(3)

We can now create a Drinfeld module using the constructor DrinfeldModule:

[2]: phi = DrinfeldModule(A, [z, 0, 1, 1])
phi

[2]: Drinfeld module defined by T |--> tˆ3 + tˆ2 + z

The first argument of the constructor is the base ring A. The second argument can be either:

• the skew polynomial ϕT , or

• the list of coefficients of ϕT (as in the example above).

In both cases, one can recover the underlying skew polynomial ring using the method
ore_polring:

[3]: phi.ore_polring()

[3]: Ore Polynomial Ring in t over Finite Field in z of size 5ˆ3 over its base
twisted by Frob

The image of a polynomial a ∈ A can be obtained by simply calling phi(a):

[4]: phi(T)

[4]: tˆ3 + tˆ2 + z

[5]: phi(T^2 + 1)

[5]: tˆ6 + 2*tˆ5 + tˆ4 + 2*z*tˆ3 + (3*zˆ2 + z + 1)*tˆ2 + zˆ2 + 1

[6]: phi(T^2 + 1) == phi(T)^2 + 1 # basic check: phi is a ring homomorphism

[6]: True

1.3 Basic properties

Many standard invariants attached to Drinfeld modules can be computed.

1.3.1 Characteristic

The characteristic of a Drinfeld module ϕ is, by definition, (a generator of) the kernel of γ.

[7]: phi.characteristic()

[7]: Tˆ3 + 3*T + 3
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1.3.2 Rank

The rank of a Drinfeld module ϕ is, by definition, the degree of the skew polynomial ϕT . More
generally, it satisfies the relation:

∀a ∈ Fq[T ], deg ϕa = rank(ϕ) · deg a.

[8]: phi.rank()

[8]: 3

[9]: a = T^2 + 1
phi(a).degree() == phi.rank() * a.degree()

[9]: True

1.3.3 Height

Let p be the characteristic of ϕ. The height of ϕ is, by definition, the quotient of the τ -valuation
of ϕp be the degree of p; it is always a positive integer.

Remark: The height is an important invariant because it is related to the rank of the p-torsion
points of the Drinfeld module.

[10]: phi.height()

[10]: 1

Having height 1 is the generic case. However, Drinfeld modules with higher heights also exist.
Here is an example in rank 2:

[11]: psi = DrinfeldModule(A, [z, 0, 1])
psi.height()

[11]: 2

1.4 Categories of Drinfeld modules

When a Drinfeld module is creates, SageMath automatically creates at the same time the cat-
egory in which it lives. This category remembers the base rings A and K and the defining
morphism γ : A→ K.

[12]: C = phi.category()
C

[12]: Category of Drinfeld modules over Finite Field in z of size 5ˆ3 over its base

Having this category as an actual object in SageMath is important for dealing with morphisms
between Drinfeld modules (as we shall see later on). Besides, several important invariants are
defined at the level of the category:

[13]: C.base() # The field K, vue as an algebra over A
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[13]: Finite Field in z of size 5ˆ3 over its base

[14]: C.base_morphism() # The defining morphism gamma
# also accessible by C.base().defining_morphism()

[14]: Ring morphism:
From: Univariate Polynomial Ring in T over Finite Field of size 5
To: Finite Field in z of size 5ˆ3 over its base
Defn: T |--> z

[15]: C.ore_polring() # The ring K{t}

[15]: Ore Polynomial Ring in t over Finite Field in z of size 5ˆ3 over its base
twisted by Frob

[16]: C.characteristic()

[16]: Tˆ3 + 3*T + 3

4



2 Morphisms and isogenies

2.1 Definitions

Let ϕ, ψ : Fq[T ]→ K{τ} be two Drinfeld modules in the same category.

By definition, a morphism ϕ → ψ is the datum of u ∈ K{τ} such that uϕT = ψTu. (This
relation implies more generally that uϕa = ψau for all a ∈ Fq[T ].)

An isogeny is, by definition, a nonzero morphism. We observe that if an isogeny ϕ→ ψ exists,
then ϕ and ψ must have the same rank.

2.2 Construction

[1]: Fq = GF(5)
A.<T> = Fq[]
K.<z> = Fq.extension(3)
phi = DrinfeldModule(A, [z, 0, 1, z])

2.2.1 The constructor hom

The simplest way to create a morphism is to use the method hom, to which we can directly pass
in the defining skew polynomial:

[2]: t = phi.ore_variable()
f = phi.hom(t + 1)
f

[2]: Drinfeld Module morphism:
From: Drinfeld module defined by T |--> z*tˆ3 + tˆ2 + z
To: Drinfeld module defined by T |--> (2*zˆ2 + 4*z + 4)*tˆ3 + (3*zˆ2 +␣

↪→2*z +
2)*tˆ2 + (2*zˆ2 + 3*z + 4)*t + z

Defn: t + 1

On the example above, we observe that the codomain of the isogeny (which is not ϕ) was
automatically determined:

[3]: psi = f.codomain()
psi

[3]: Drinfeld module defined by T |--> (2*zˆ2 + 4*z + 4)*tˆ3 + (3*zˆ2 + 2*z +␣
↪→2)*tˆ2

+ (2*zˆ2 + 3*z + 4)*t + z

An important class of endomorphisms of a given Drinfeld module ϕ are scalar multiplications:
they are endomorphisms corresponding to the skew polynomial ϕa for a ∈ Fq[T ]. Those endo-
morphisms can be simply instantiated as follows:

[4]: g = phi.hom(T)
g

[4]: Endomorphism of Drinfeld module defined by T |--> z*tˆ3 + tˆ2 + z
Defn: z*tˆ3 + tˆ2 + z
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2.2.2 Set of morphisms between two Drinfeld modules

When we know the domain ϕ and the codomain ψ, we can construct the homset Hom(ϕ, ψ):

[5]: H = Hom(phi, psi)
H

[5]: Set of Drinfeld module morphisms from (gen) z*tˆ3 + tˆ2 + z to (gen) (2*zˆ2 +
4*z + 4)*tˆ3 + (3*zˆ2 + 2*z + 2)*tˆ2 + (2*zˆ2 + 3*z + 4)*t + z

As a shortcut, when ϕ = ψ, we can use the End primitive:

[6]: E = End(phi)
E

[6]: Set of Drinfeld module morphisms from (gen) z*tˆ3 + tˆ2 + z to (gen) z*tˆ3 +␣
↪→tˆ2

+ z

Notice that those homsets are the parents in which f and g (which we created earlier) naturally
live:

[7]: f.parent() is H

[7]: True

[8]: g.parent() is E

[8]: True

Once the homset is defined, we can call it to create morphisms in it (as it is usual in SageMath).
This provides an alternative to the hom constructor to define morphisms. For example:

[9]: Frob = E(t^3)
Frob

[9]: Endomorphism of Drinfeld module defined by T |--> z*tˆ3 + tˆ2 + z
Defn: tˆ3

The latter is the Frobenius endomorphism. It is also available via the method
frobenius_endomorphism:

[10]: phi.frobenius_endomorphism()

[10]: Endomorphism of Drinfeld module defined by T |--> z*tˆ3 + tˆ2 + z
Defn: tˆ3

2.3 About the structure of Hom(ϕ, ψ) and End(ϕ)

First of all, of course, there is a composition law on the homsets: when the domain of f is equal
to the codomain of g, one can compose f and g, producing a new morphism f ◦g. In the Drinfeld
module setting, this operation simply corresponds to the multiplication of the underlying skew
polynomials.
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It is available in SageMath using the multiplication operator * or the exponentiation operator
ˆ (or **):

[11]: f * g

[11]: Drinfeld Module morphism:
From: Drinfeld module defined by T |--> z*tˆ3 + tˆ2 + z
To: Drinfeld module defined by T |--> (2*zˆ2 + 4*z + 4)*tˆ3 + (3*zˆ2 +␣

↪→2*z +
2)*tˆ2 + (2*zˆ2 + 3*z + 4)*t + z

Defn: (2*zˆ2 + 4*z + 4)*tˆ4 + (z + 1)*tˆ3 + tˆ2 + (2*zˆ2 + 4*z + 4)*t + z

[12]: Frob^5

[12]: Endomorphism of Drinfeld module defined by T |--> z*tˆ3 + tˆ2 + z
Defn: tˆ15

We observe that the sum of two morphisms ϕ→ ψ is well-defined. Indeed if u and v satisfies the
relation ϕTu = uψT and ϕT v = vψT then one immediately deduce that ϕT (u+ v) = (u+ v)ψT .
Therefore Hom(ϕ, ψ) is naturally a commutative group for the addition.

Besides, given that elements of Fq[T ] define endomorphisms of any Drinfeld module:

• the Hom space Hom(ϕ, ψ) inherits a structure of left Fq[T ]-module (composing on the left
by the endomorphism ψa of ψ),

• the End space End(ϕ) inherits a structure of Fq[T ]-algebra.

Our implementation handles those quite transparently. For example:

[13]: T * f

[13]: Drinfeld Module morphism:
From: Drinfeld module defined by T |--> z*tˆ3 + tˆ2 + z
To: Drinfeld module defined by T |--> (2*zˆ2 + 4*z + 4)*tˆ3 + (3*zˆ2 +␣

↪→2*z +
2)*tˆ2 + (2*zˆ2 + 3*z + 4)*t + z

Defn: (2*zˆ2 + 4*z + 4)*tˆ4 + (z + 1)*tˆ3 + tˆ2 + (2*zˆ2 + 4*z + 4)*t + z

[14]: Frob + g

[14]: Endomorphism of Drinfeld module defined by T |--> z*tˆ3 + tˆ2 + z
Defn: (z + 1)*tˆ3 + tˆ2 + z

[15]: Frob * g == g * Frob

[15]: True

[16]: (Frob + g)^5 == Frob^5 + g^5

[16]: True
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2.4 Recognizing isomorphisms

It follows easily from the definition that a morphism f : ϕ→ ψ is an isomorphism if and only if
the skew polynomial defining f is constant.

The method is_isomorphism allows for checking this fact.

[17]: g.is_isomorphism()

[17]: False

[18]: h = phi.hom(z)
h

[18]: Drinfeld Module morphism:
From: Drinfeld module defined by T |--> z*tˆ3 + tˆ2 + z
To: Drinfeld module defined by T |--> z*tˆ3 + (4*zˆ2 + z + 4)*tˆ2 + z
Defn: z

[19]: h.is_isomorphism()

[19]: True

The method inverse computes the inverse of an isomorphism:

[20]: h.inverse()

[20]: Drinfeld Module morphism:
From: Drinfeld module defined by T |--> z*tˆ3 + (4*zˆ2 + z + 4)*tˆ2 + z
To: Drinfeld module defined by T |--> z*tˆ3 + tˆ2 + z
Defn: 3*zˆ2 + 4

It is also possible to check if two given Drinfeld modules are isomorphic using the method
is_isomorphic:

[21]: phi2 = h.codomain()
phi.is_isomorphic(phi2)

[21]: True

[22]: phi.is_isomorphic(psi)

[22]: False

In the last case, ϕ and ψ are isogenous (via f) but they are not isomorphic.

2.5 The case of finite fields

When K is a finite field, the subspace of Hom(ϕ, ψ) consisting of morphisms defined by a skew
polynomial of degree at most d (for some given positive integer d) is a finite dimensional Fq-vector
space.

The method basis on the homset returns a basis of this vector space:
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[23]: H.basis(degree=5)

[23]: [Drinfeld Module morphism:
From: Drinfeld module defined by T |--> z*tˆ3 + tˆ2 + z
To: Drinfeld module defined by T |--> (2*zˆ2 + 4*z + 4)*tˆ3 + (3*zˆ2 +␣

↪→2*z
+ 2)*tˆ2 + (2*zˆ2 + 3*z + 4)*t + z

Defn: t + 1,
Drinfeld Module morphism:

From: Drinfeld module defined by T |--> z*tˆ3 + tˆ2 + z
To: Drinfeld module defined by T |--> (2*zˆ2 + 4*z + 4)*tˆ3 + (3*zˆ2 +␣

↪→2*z
+ 2)*tˆ2 + (2*zˆ2 + 3*z + 4)*t + z

Defn: (2*zˆ2 + 4*z + 3)*tˆ4 + z*tˆ3 + tˆ2 + (2*zˆ2 + 4*z + 4)*t + z,
Drinfeld Module morphism:

From: Drinfeld module defined by T |--> z*tˆ3 + tˆ2 + z
To: Drinfeld module defined by T |--> (2*zˆ2 + 4*z + 4)*tˆ3 + (3*zˆ2 +␣

↪→2*z
+ 2)*tˆ2 + (2*zˆ2 + 3*z + 4)*t + z

Defn: (3*zˆ2 + 3*z + 1)*tˆ4 + (3*zˆ2 + 4*z)*tˆ3 + (3*zˆ2 + z + 1)*tˆ2 +␣
↪→(2*z

+ 3)*t + zˆ2,
Drinfeld Module morphism:

From: Drinfeld module defined by T |--> z*tˆ3 + tˆ2 + z
To: Drinfeld module defined by T |--> (2*zˆ2 + 4*z + 4)*tˆ3 + (3*zˆ2 +␣

↪→2*z
+ 2)*tˆ2 + (2*zˆ2 + 3*z + 4)*t + z

Defn: tˆ4 + tˆ3]

Over finite fields, we also have one method for checking whether a Hom space is reduced to zero.

[24]: H.is_zero()

[24]: False

[25]: psi2 = DrinfeldModule(A, [z, 0, 1, z^2])
H2 = Hom(phi, psi2)
H2.is_zero()

[25]: True

Besides, when a Hom space is nonzero, we can use the method an_isogeny to produce a nonzero
morphism in it:

[26]: H.an_isogeny()

[26]: Drinfeld Module morphism:
From: Drinfeld module defined by T |--> z*tˆ3 + tˆ2 + z
To: Drinfeld module defined by T |--> (2*zˆ2 + 4*z + 4)*tˆ3 + (3*zˆ2 +␣

↪→2*z +
2)*tˆ2 + (2*zˆ2 + 3*z + 4)*t + z
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Defn: t + 1
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3 j-invariants

3.1 Definition

The j-invariants of a Drinfeld module form a family of elements which caracterizes the isomor-
phism class of the Drinfeld module over an algebraic closure.

More precisely, let ϕ : Fq[T ]→ K{τ} be a Drinfeld module and write

ϕT = g0 + g1τ + · · ·+ grτ
r

where r denotes the rank of ϕ. Let (k1, . . . , kn), (d1, . . . , dn) be two n-tuple of integers such that
1 ≤ k1 < k2 < . . . < kn < r and di > 0 for all i. We consider an additional nonnegative integer
d and assume the so-called weight-0 condition:

d1(q
k1 − 1) + d2(q

k2 − 1) + · · ·+ dn(q
kn − 1) = d(qr − 1).

To this datum, we associate the following quantity, called the ((k1, . . . , kn), (d1, . . . , dn, d))-j-
invariant of ϕ:

jd1,...,dn,dk1,...,kn
(ϕ) :=

1

gdr

n∏
i=1

gdiki

A j-invariant is called basic when gcd(d1, . . . , dn, d) = 1. There is only a finite number of basic
j-invariants. Moreover, if ((k1, . . . , kn), (d1, . . . , dn, d)) is any parameter, we can cook up a basic
one simply by dividing the di’s and d by their gcd. The j-invariant corresponding to the initial
parameter is equal to the basic j-invariant raised to the power gcd(d1, . . . , dn, d).

A classical result, due to Potemine, asserts that two Drinfeld module ϕ and ψ are isomorphic
over K̄ if and only if their basic j-invariants are all equal.

3.2 Computation of j-invariants

[1]: Fq = GF(5)
A.<T> = Fq[]
K.<z> = Fq.extension(3)
phi = DrinfeldModule(A, [z, 0, 1, z, z^2])

The first important thing to know is the (finite) list of parameters ((k1, . . . , kn), (d1, . . . , dn, d))
leading to basic j-invariants. This list is accessible via the method
basic_j_invariant_parameters.

[2]: parameters = phi.basic_j_invariant_parameters()
parameters

[2]: [((1, 2, 3), (26, 1, 4, 1)),
((1, 2, 3), (57, 1, 3, 1)),
((1, 2, 3), (88, 1, 2, 1)),
...
((1, 2, 3), (93, 26, 153, 32)),
((1, 2, 3), (155, 26, 151, 32)),
((1, 2, 3), (156, 26, 156, 33))]

11



For a Drinfeld module of rank 5, this list is quite long:

[3]: len(parameters)

[3]: 3402

However, when certain coefficients of ϕT vanish, some j-invariants will vanish as well as the latter
are defined as products of the formers. In this case, it is useful to know the list of parameters
leading to nonzero basic j-invariants. In order to get it, we can simply pass in the keyword
nonzero=True.

[4]: nonzero_parameters = phi.basic_j_invariant_parameters(nonzero=True)
nonzero_parameters

[4]: [((2, 3), (1, 30, 6)),
((2, 3), (6, 24, 5)),
((2, 3), (7, 54, 11)),
((2, 3), (8, 84, 17)),
((2, 3), (9, 114, 23)),
((2, 3), (10, 144, 29)),
((2, 3), (11, 18, 4)),
((2, 3), (13, 78, 16)),
((2, 3), (15, 138, 28)),
((2, 3), (16, 12, 3)),
((2, 3), (17, 42, 9)),
((2, 3), (19, 102, 21)),
((2, 3), (20, 132, 27)),
((2, 3), (21, 6, 2)),
((2, 3), (23, 66, 14)),
((2, 3), (25, 126, 26))]

Once we know a valid parameter, we can compute the j-invariant, using the method
j_invariant:

[5]: parameter = nonzero_parameters[0]
phi.j_invariant(parameter)

[5]: 4*zˆ2 + 2*z + 1

It is also possible to get the complete list of j-invariants by calling the method
basic_j_invariants:

[6]: phi.basic_j_invariants(nonzero=True)

[6]: {((2, 3), (1, 30, 6)): 4*zˆ2 + 2*z + 1,
((2, 3), (6, 24, 5)): 4*z + 3,
((2, 3), (7, 54, 11)): 2*z,
((2, 3), (8, 84, 17)): 4*zˆ2 + 3*z + 1,
((2, 3), (9, 114, 23)): zˆ2 + 2*z + 1,
((2, 3), (10, 144, 29)): 2*zˆ2 + 2*z + 1,
((2, 3), (11, 18, 4)): 2*z + 3,
((2, 3), (13, 78, 16)): 3*zˆ2 + z,
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((2, 3), (15, 138, 28)): zˆ2 + 3*z + 1,
((2, 3), (16, 12, 3)): 4*zˆ2 + 3*z + 4,
((2, 3), (17, 42, 9)): 3*zˆ2 + 3*z + 4,
((2, 3), (19, 102, 21)): 3*zˆ2 + 2*z + 4,
((2, 3), (20, 132, 27)): 2*zˆ2 + 2*z + 2,
((2, 3), (21, 6, 2)): zˆ2,
((2, 3), (23, 66, 14)): zˆ2 + 4*z + 1,
((2, 3), (25, 126, 26)): 2*zˆ2 + z + 1}

3.2.1 jk-invariants

The j-invariants associated to the basic parameter

(
k,

(
qr − 1

qgcd(r,k) − 1
,

qk − 1

qgcd(r,k) − 1

))
is known as jk-invariants. In this case, the method j_invariant accepts the integer k as pa-
rameter as well.

[7]: phi.j_invariant(3)

[7]: 3*z

[8]: phi.j_invariant([[3], [156, 31]])

[8]: 3*z

3.3 j-invariants in small rank

3.3.1 The case of rank 1

[9]: phi = DrinfeldModule(A, [z, 1])
phi

[9]: Drinfeld module defined by T |--> t + z

In rank 1, there is no basic j-invariant.

[10]: phi.basic_j_invariant_parameters()

[10]: []

It is then not relevant to compute j-invariant.

Besides, by Potemime’s theorem, we conclude that all Drinfeld module of rank 1 with the same
defining morphism γ : Fq[T ] → K are isomorphic over an algebraic closure K̄ of K. It is not
true however that they are isomorphic over K.

[11]: psi = DrinfeldModule(A, [z, z])
phi.is_isomorphic(psi)

[11]: False
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[12]: phi.is_isomorphic(psi, absolutely=True)

[12]: True

3.3.2 The case of rank 2

[13]: phi = DrinfeldModule(A, [z, z^2, z^3])
phi

[13]: Drinfeld module defined by T |--> (2*z + 2)*tˆ2 + zˆ2*t + z

For Drinfeld module of rank 2, there is only one basic j-invariant, namely (1, (q + 1, 1))

[14]: phi.basic_j_invariant_parameters()

[14]: [((1,), (6, 1))]

In this case (and only in this case!), it is allowed to call the method j_invariant without any
parameter.

[15]: phi.j_invariant()

[15]: 4*zˆ2 + 4
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4 Norms and characteristic polynomials

4.1 Definitions

4.1.1 The case of endomorphisms

Let ϕ : Fq[T ]→ K{τ} be a Drinfeld module of characteristic p and let q be a maximal ideal of
Fq[T ] different from p.

For each positive integer n, one considers the set of qn-torsion points of ϕ defined by:

ϕ[qn] =
{
x ∈ K̄ : ϕa(x) = 0,∀a ∈ qn

}
where we agree that the variable τ in the skew polynomial ϕa acts as the Frobenius x 7→ xq.
The space ϕ[qn] inherits a structure of Fq[T ]-module by letting a ∈ Fq[T ] acting as x 7→ ϕa(x).
By definition ϕ[qn] is killed by qn.

The Tate module of ϕ is defined by:

Tq(ϕ) = lim←−
n→∞

ϕ[qn]

it is a module over the ring Aq, defined as the completion of Fq[T ] at the place q, i.e. Aq =
lim←−n→∞ Fq[T ]/q

n. If r denotes the rank of ϕ, then it is a standard result that Tq(ϕ) is free of
rank r over Aq.

Any endomorphism f : ϕ→ ϕ induces a Aq-linear map Tq(f) : Tq(ϕ)→ Tq(ϕ). By definition:

• the norm of f is the determinant of Tq(f),

• the characteristic polynomial of f is the characteristic polynomial of Tq(f).

One proves that they both do not depend on the choice of q and that the former lies in Fq[T ]
while the latter is a polynomial with coefficients in Fq[T ].

4.1.2 The case of general morphisms

We now consider a morphism f : ϕ → ψ between two different Drinfeld modules ϕ and ψ. In
this setting, the characteristic polynomial of f is no longer defined but the norm of f continues
to make sense as an ideal (and not an actual element) of Fq[T ].

In order to define it, we consider the application

T (f) : K̄ → K̄
x 7→ u(x)

where u is the skew polynomial defining f . We notice that T (f) is Fq[T ]-linear if we endow the
domain and the codomain with the structure of Fq[T ]-module coming from ϕ and ψ respectively.
If f is nonzero, the cokernel of T (f) is a finitely generated torsion Fq[T ]-module; therefore, it is
of the form

coker T (f) ≃ Fq[T ]/a1 × Fq[T ]/a2 × · · · × Fq[T ]/am

for some ideals a1, . . . , am of Fq[T ]. The norm of f is defined by ν(f) = a1 · · · am (product of
ideals).
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4.2 Computing norms and characteristic polynomials In SageMath

As we see, the definition of norms and characteristic polynomials involve intermediate compli-
cated objects (namely, the Tate module Tq(f) or the map T (f)) which themselves involve an
algebraic closure of K and thus looks difficult to implement while keeping good performances.

However, our implementation provides facilities for computing efficiently norms and charac-
teristic polynomials of arbitrary morphisms/endomorphisms. Those are based on alternative
definitions of norms and characteristic polynomials coming from the theory of Anderson mo-
tives.

4.2.1 Endomorphisms

[1]: Fq = GF(5)
A.<T> = Fq[]
K.<z> = Fq.extension(3)
phi = DrinfeldModule(A, [z, 0, 1, z])

We start our tour by computing the norm of the Frobenius endomorphism:

[2]: Frob = phi.frobenius_endomorphism()
Frob.norm()

[2]: Principal ideal (Tˆ3 + 3*T + 3) of Univariate Polynomial Ring in T over Finite
Field of size 5

For consistency, the method norm always returns an ideal by default. This behavior can be
overrided by passing in the argument ideal=False:

[3]: Frob.norm(ideal=False)

[3]: 3*Tˆ3 + 4*T + 4

We observe that the norm of the Frobenius is Fq-collinear to the characteristic, which is a
standard fact:

[4]: phi.characteristic()

[4]: Tˆ3 + 3*T + 3

[5]: 3 * phi.characteristic()

[5]: 3*Tˆ3 + 4*T + 4

We can compute similarly the norm of the endomorphisms ϕa for some a ∈ Fq[T ]

[6]: f = phi.hom(T)
f.norm()

[6]: Principal ideal (Tˆ3) of Univariate Polynomial Ring in T over Finite Field of
size 5
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[7]: g = phi.hom(T+1)
g.norm()

[7]: Principal ideal (Tˆ3 + 3*Tˆ2 + 3*T + 1) of Univariate Polynomial Ring in T␣
↪→over

Finite Field of size 5

In each case, we observe that the norm of ϕa is the ideal generated by a3; it is actually a general
fact that the norm of ϕa is arFq[T ] where r is the rank of the underlying Drinfeld module.

Similarly the characteric polynomial can be computed thanks to the method charpoly (or
characteristic_polynomial):

[8]: Frob.charpoly()

[8]: Xˆ3 + (T + 1)*Xˆ2 + (2*T + 3)*X + 2*Tˆ3 + T + 1

[9]: f.charpoly()

[9]: Xˆ3 + 2*T*Xˆ2 + 3*Tˆ2*X + 4*Tˆ3

[10]: g.charpoly(var='Y') # We can change the variable name

[10]: Yˆ3 + (2*T + 2)*Yˆ2 + (3*Tˆ2 + T + 3)*Y + 4*Tˆ3 + 2*Tˆ2 + 2*T + 4

Again, we can check that the characteristic polynomial of ϕa is (X − a)r:

[11]: g.charpoly().factor()

[11]: (X + 4*T + 4)ˆ3

4.2.2 General morphisms

For general morphisms, only the method norm is available (given that the characteristic polyno-
mial is not defined in this generality).

[12]: t = phi.ore_variable()
h = phi.hom(t + 1)
h

[12]: Drinfeld Module morphism:
From: Drinfeld module defined by T |--> z*tˆ3 + tˆ2 + z
To: Drinfeld module defined by T |--> (2*zˆ2 + 4*z + 4)*tˆ3 + (3*zˆ2 +␣

↪→2*z +
2)*tˆ2 + (2*zˆ2 + 3*z + 4)*t + z

Defn: t + 1

[13]: h.norm()

[13]: Principal ideal (T + 4) of Univariate Polynomial Ring in T over Finite Field␣
↪→of

size 5
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We verify, on examples, that the norm is multiplicative:

[14]: (h * Frob).norm() == h.norm() * Frob.norm()

[14]: True

[15]: (h * f).norm() == h.norm() * f.norm()

[15]: True

[16]: (Frob * g).norm() == Frob.norm() * g.norm()

[16]: True

4.3 The case of the Frobenius endomorphism

When K is a finite field, the characteristic polynomial of the Frobenius endomorphism is an
invariant of primary importance. Our implementation provides a direct method for accessing it:

[17]: phi.frobenius_charpoly()

[17]: Xˆ3 + (T + 1)*Xˆ2 + (2*T + 3)*X + 2*Tˆ3 + T + 1

Actually, several different algorithms are available for this computations. They are accessible by
passing in the keyword algorithm which can be:

• gekeler: it tries to identify coefficients by writing that the characteristic polynomial
annihilates the Frobenius endomorphism; this algorithm may fail is some cases;

• motive: it uses the action of the Frobenius on the Anderson motive;

• crystalline: it uses the action of the Frobenius on the crystalline cohomology;

• CSA: it exploits the structure of central simple algebra of Frac K{τ}.

Of course, all those algorithms output the same answer but performances may vary. By default,
the crystalline algorithm is chosen when the rank is smaller than the degree of the extension
K/Fq whereas the CSA algorithm is chosen otherwise.

4.3.1 Isogeny test

An important result asserts that two Drinfeld modules ϕ and ψ are isogenous if and only if the
characteristic polynomials of the Frobenius endomorphisms of ϕ and ψ agrees. This provides an
efficient isogeny test, which is available in our package via the method is_isogenous.

[18]: psi = h.codomain() # recall that h was an isogeny with domain phi
phi.is_isogenous(psi)

[18]: True

[19]: phi2 = DrinfeldModule(A, [z, 0, 1, z^2])
phi.is_isogenous(phi2)

[19]: False
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Finally, we mention that, when an isogeny does exist, one can find it using the method
an_isogeny on the homset.

[20]: Hom(phi, psi).an_isogeny()

[20]: Drinfeld Module morphism:
From: Drinfeld module defined by T |--> z*tˆ3 + tˆ2 + z
To: Drinfeld module defined by T |--> (2*zˆ2 + 4*z + 4)*tˆ3 + (3*zˆ2 +␣

↪→2*z +
2)*tˆ2 + (2*zˆ2 + 3*z + 4)*t + z

Defn: t + 1

4.3.2 Timings

Below, we compare timings.

When [K : Fq] is large, the crystalline algorithm is the fastest:

[21]: Fq = GF(5)
A.<T> = Fq[]
K.<z> = Fq.extension(50)
phi = DrinfeldModule(A, [z] + [K.random_element() for _ in range(5)] + [1])

[22]: %time _ = phi.frobenius_charpoly(algorithm="motive")

CPU times: user 969 ms, sys: 5.7 ms, total: 975 ms
Wall time: 981 ms

[23]: %time _ = phi.frobenius_charpoly(algorithm="crystalline")

CPU times: user 623 ms, sys: 2.98 ms, total: 626 ms
Wall time: 629 ms

[24]: %time _ = phi.frobenius_charpoly(algorithm="CSA")

CPU times: user 3.92 s, sys: 14.6 ms, total: 3.93 s
Wall time: 3.96 s

On the contrary, when the rank is large, the CSA algorithm is the fastest:

[25]: Fq = GF(5)
A.<T> = Fq[]
K.<z> = Fq.extension(5)
phi = DrinfeldModule(A, [z] + [K.random_element() for _ in range(50)] + [1])

[26]: %time _ = phi.frobenius_charpoly(algorithm="motive")

CPU times: user 1.15 s, sys: 12.9 ms, total: 1.16 s
Wall time: 1.17 s

[27]: %time _ = phi.frobenius_charpoly(algorithm="crystalline")
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CPU times: user 2.08 s, sys: 13.9 ms, total: 2.1 s
Wall time: 2.11 s

[28]: %time _ = phi.frobenius_charpoly(algorithm="CSA")

CPU times: user 40 ms, sys: 1.97 ms, total: 42 ms
Wall time: 41.8 ms
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5 Exponential and logarithm

5.1 Definitions

Consider the rational function field K = Fq(T ) and let K∞ = Fq((
1
T )) be the completion of this

field at the place 1
T . We define C∞ to be the completion of an algebraic closure of K∞. The

field C∞ plays a similar role to the field of complex numbers.

An important aspect of Drinfeld modules is their analytic point of view. Given any Drinfeld
module ϕ : Fq[T ] → C∞{τ} of rank r, one can show that there exists a Fq[T ]-lattice of rank
r, i.e. a free Fq[T ]-submodule of C∞ of rank r, denoted by Λϕ, such that for any z ∈ C∞ and
a ∈ Fq[T ]

ϕa(z) = z
∏

λ∈a−1Λϕ/Λϕ

λ ̸=0

(
1− z

eϕ(λ)

)

where eϕ : C∞ → C∞ is a Fq-linear, surjective and nonconstant function. In particular, it may
be written as a power series

eϕ(z) = z +
∑
i≥1

αiz
qi .

This function is called the exponential of ϕ. The compositional inverse of eϕ exists and is named
the logarithm of ϕ, denoted logϕ:

logϕ(z) = z +
∑
i≥1

βiz
qi .

5.2 Explanations

We explain here how the code work. In short, given any Drinfeld module

ϕ : T 7→ g0 + g1τ + · · ·+ grτ
r,

we first compute the logarithm using a recursive procedure and then we revert the obtained
power series to get the exponential.

More precisely, we use the following functional equation:

eϕ(az) = ϕa(eϕ(z)).

Applying logϕ on both side of the functional equation we get

a logϕ(z) = logϕ(ϕa(z)).

Then, one may compare the coefficients on both side of the above equation and obtain the
recursive procedure:

aβi =
∑

n+m=i

βng
qn

m .
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Setting, β0 := 1, this procedure yields an infinite sequence (βi)i≥0 corresponding to the loga-
rithm.

Next, since eϕ ◦ logϕ(z) = z by definition, we may now compute the coefficients of eϕ recursively:

αi = −
i−1∑
n=0

αiβ
qn

i−n.

The resulting sequence (αi)i≥0 corresponds to the exponential of ϕ.

[1]: q = 4
Fq = GF(q)
A = Fq['T']
K.<T> = Frac(A)
phi = DrinfeldModule(A, [T, T+1, T^2 - T + 1])

We use the method exponential to compute a power series approximation of eϕ:

[2]: exp = phi.exponential()
exp

[2]: z + ((1/(Tˆ3+Tˆ2+T))*zˆ4) + O(zˆ8)

To compute the logarithm, use the method logarithm:

[3]: log = phi.exponential()
log

[3]: z + ((1/(Tˆ3+Tˆ2+T))*zˆ4) + O(zˆ8)

The returned power series is a lazy power series. This means that the user does not need to
input any precision parameter and the code computes the coefficients on demands.

[4]: exp[q**5]

[4]: (Tˆ2045 + Tˆ2044 + ... + Tˆ2 + 1)/(Tˆ4827 + Tˆ4825 + ... + Tˆ342 + Tˆ341)

[5]: log[q**5]

[5]: (Tˆ2045 + Tˆ2044 + ... + Tˆ2 + 1)/(Tˆ4827 + Tˆ4825 + ... + Tˆ342 + Tˆ341)

The logarithm and exponential are the mutual compositional inverse to one another:

[6]: log.compose(exp)

[6]: z + O(zˆ8)

[7]: exp.compose(log)

[7]: z + O(zˆ8)

In order to obtain more coefficients, one can slice the series:
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[8]: exp[0:q^2 + 1] # coefficients from 0 to q^2

[8]: [0,
1,
0,
0,
1/(Tˆ3 + Tˆ2 + T),
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
(Tˆ14 + Tˆ13 + Tˆ12 + Tˆ10 + Tˆ9 + Tˆ8 + Tˆ6 + Tˆ5 + Tˆ4 + T + 1)/(Tˆ28 +␣
↪→Tˆ24

+ Tˆ20 + Tˆ13 + Tˆ9 + Tˆ5)]

5.3 The case of the Carlitz module

Closed formulas for the coefficients of the exponential and logarithm are known when ϕ = ρ,
the Carlitz module:

ρ : T 7→ T + τ.

More precisely, for any i > 0 we define the following quantities:

• [i] := T qi − T ,

• D0 := 1 and Di := [i][i− 1]q · · · [1]qi−1 ,

• L0 := 1 and Li := [i][i− 1] · · · [1].

Then, the exponential is given explicitely by:

eρ(z) =
∑
i≥0

zq
i

Di

and the logarithm is given by

logρ(z) =
∑
i≥0

(−1)i z
qi

Li
.

[9]: rho = DrinfeldModule(A, [T, 1]) # Carlitz module
exp = rho.exponential()
log = rho.logarithm()

[10]: exp
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[10]: z + ((1/(Tˆ4+T))*zˆ4) + O(zˆ8)

[11]: log

[11]: z + ((1/(Tˆ4+T))*zˆ4) + O(zˆ8)

[12]: def sq(i):
"""
Return [i] = T^(q^i) - T.
"""
return T^(q^i) - T

def D(i):
"""
Return 1 if i = 0 and D_i = [i][i - 1]^q *... * [1]^(q^(i - 1)) otherwise.
"""
if i == 0:

return 1
return prod(sq(n)**(q^(i - n)) for n in range(1, i + 1))

def L(i):
"""
Return 1 if i = 0 and L_i = [i][i - 1] *...* [1] otherwise.
"""
if i == 0:

return 1
return prod(sq(n) for n in range(1, i + 1))

We can check the expected values:

[13]: assert exp[q] == 1/D(1)
assert exp[q**2] == 1/D(2)
assert exp[q**3] == 1/D(3)
assert exp[q**4] == 1/D(4)

[14]: assert log[q] == -1/L(1)
assert log[q**2] == 1/L(2)
assert log[q**3] == -1/L(3)
assert log[q**4] == 1/L(4)
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