
Instrument : Projet de recherche collaborative (PRC)

Champ disciplinaire : Mathématiques, Sciences du numérique

CES : Mathématiques, informatique théorique,
automatique et traitement du signal

Acronyme : CLap–CLap

Titre : La correspondance de Langlands p-adique :
une approche constructive et algorithmique

Summary

The p-adic Langlands correspondence has become nowadays one of the deepest and the most stimulating
research programs in number theory. It was initiated in France in the early 2000’s by Breuil and aims at
understanding the relationships between the p-adic representations of p-adic absolute Galois groups on the
one hand and the p-adic representations of p-adic reductive groups on the other hand. Beyond the case of
GL2(Qp) which is now well established, the p-adic Langlands correspondence remains quite obscure and
mysterious new phenomena enter the scene; for instance, on the GLn(F )-side one encounters a vast zoology
of representations which seems extremely difficult to organize.

The CLap–CLap ANR project aims at accelerating the expansion of the p-adic Langlands program beyond
the well-established case of GL2(Qp). Its main originality consists in its very constructive approach mostly
based on algorithmics and calculations with computers at all stages of the research process. We shall pursue
three different objectives closely related to our general aim:

(1) draw a conjectural picture of the (still hypothetical) p-adic Langlands correspondence in the case of GLn,

(2) compute many deformation spaces of Galois representations and make the bridge with deformation spaces
of representations of reductive groups,

(3) design new algorithms for computations with Hilbert and Siegel modular forms and their associated
Galois representations.

This project will also be the opportunity to contribute to the development of the mathematical software
SAGEMATH and to the expansion of computational methodologies.
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1 Context, positioning, and objective of the full proposal

Roughly speaking, arithmetic geometry aims at solving Diophantine equations by geometric methods. One of
its most prominent achievements is certainly the Langlands program, which makes an unexpected connection
between representations of the absolute Galois group of Q and certain adelic representations of reductive
algebraic groups. This is significant since many problems in number theory and arithmetic geometry can be
reduced to questions concerning Galois groups; the Langlands correspondence then provides new tools of
analytic nature for attacking them. On the other hand, for a very long time, an ubiquitous method in number
theory was to study problems, objects or equations (e.g. Diophantine equations) modulo various integers n or,
equivalently, in different fields of p-adic numbers Qp where p denotes a prime number.

Let us now fix a prime number p. In the early 2000’s, Breuil suggested the existence of a purely p-
adic version of the classical local Langlands correspondence. Fifteen years later, the p-adic Langlands
correspondence has become a major topic in number theory. This project fits into this dynamic and aims at
accelerating the expansion of the p-adic Langlands program. Its main originality consists in its very constructive
approach mostly based on algorithmics and calculations with computers at all stages of the research process.

Breuil’s initial motivation for looking for a purely local p-adic Langlands correspondence was to understand
if p-adic Hodge theory on the Galois side has a counterpart on the GLn side (it turns out that p-adic Hodge
theory is essentially missing in the classical local Langlands program), and if so, then to explain how. In all
what follows, fix a finite extension F of Qp. More precisely, one essential aim of the p-adic Langlands program
is to understand the representations of GLn(F ) in the p-adic or mod p étale cohomology of a tower of Shimura
varieties, and to relate them to n-dimensional p-adic or mod p representations of Gal(F̄ /F ). It is currently
completely understood only in the case of 2-dimensional representations of Gal(Q̄p/Qp), that is for the group
GL2(Qp), but even this limited case has had strong applications to modularity theorems: for instance the
proofs of the Fontaine–Mazur conjecture for 2-dimensional p-adic geometric representations of Gal(Q̄/Q) rely
on the p-adic Langlands program for GL2(Qp) [78, 56]. If Qp is replaced by F , or the dimension 2 by the
dimension n, the p-adic Langlands program is essentially open, despite many partial results, in particular
recent progress on the locally analytic aspects of the p-adic representations of GLn(F ).

The objectives of this project consist of three intricated parts: (1) continue to develop the aforementioned
locally analytic aspects, (2) study deformation spaces on both sides and try to find in there evidences or hints
for the existence and the construction of the p-adic Langlands correspondence and (3) study the cohomology of
Hilbert and Siegel modular varieties in which the p-adic Langlands correspondence is expected to be realized.

The main originality of our project builds on our plan to constantly rely on algorithms and computers.
We are convinced that the time is ripe to develop this approach. Indeed, on the one hand, several recent
results in p-adic Langlands program have highlighted new unexpected phenomena, which are widely not
understood today. The need to study a large range of new test examples is therefore manifest. On the other
hand, we believe that algorithms in number theory are nowadays sufficiently mature and can definitely help us
in computing and analyzing large families of required examples. In this sense such algorithms can be decisive
elements in future research.

1.1 State of the art

1.1.1 Number theory and algorithmics: a long history

Many interesting questions in number theory are liable to experimental study. This is the case in algebraic
number theory: properties of Galois modules [91], search for number field extensions of small discriminant
[36], small regulator [116], statistical study of class groups in extensions of a certain kind [38], etc. The
explicit side of analytic number theory (study of the zeroes of the Riemann zeta function [100]), of diophan-
tine geometry (rational points on surfaces [88], BSD conjecture [118]) and of the geometry of numbers
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(classification of lattices [92], estimation of the Hermite constant) lead to sometimes delicate computational
questions. Effectively solving these questions makes it possible to test and refine conjectures and estimates of
constants involved in many number-theoretic inequalities.

The first answer to all these questions consists in constructing tables and making them available to
colleagues and users. Number theory software packages were erstwhile designed so as to establish these tables.
Since the opening of computers to the masses, the distribution of efficient and uncomplicated programs has
superseded the publication of tables. Progress in theoretical computer science, and especially in complexity
theory [102, 21], has turned algorithmic number theory into a subject of its own instead of a mere tool. For
instance, determining which elementary arithmetic problems can be solved in polynomial or quasi-linear time
in a deterministic or probabilistic way is a question which is often difficult and sometimes profound [3].

Nowadays, many advanced functionalities have been implemented: for the study of number fields (com-
putation of the ring of integers, of the class group and of the unit group, evaluation of the Dedekind zeta
function), class field theory (computation of ray class fields), elliptic curves (minimal model, heights, L
series, modular parametrisation, analytic rank, Heegner points...), lattices, usual transcendental and p-adic
functions, and so on. More recent work has focused on the algorithmic aspects of algebraic curves (jacobian
varieties, Theta functions, modular equations) and their applications [39], on elementary algorithmic and on
cryptography, as well as the computation of Galois representations.

The first step towards a computational Langlands correspondence has been the development and imple-
mentation of efficients algorithms for relative number fields and class field theory [35]. Ray class fields are
constructed using algebraic methods (Kummer theory) or analytic methods (Stark units).

The second step is concerned with the algorithmic aspects of modular symbols, modular curves, and
modular forms. This theory was developed by Birch, Manin, Shokurov, Cremona, Merel among others [49].
The Taniyama–Weil conjecture was thus made effective a long time before it was proven. This results in the
existence of algorithms to compute the p-th coefficient of a given modular form in time polynomial in p.

More recent algorithms compute coefficients of modular forms in time polynomial in log p, using efficient
computation of the associated modular representations to the given modular form. The algorithm imagined by
Couveignes and Edixhoven in [54] to compute Galois representations attached to classical modular forms has
been recently improved by Nicolas Mascot [93, 94]. He implemented it in SAGEMATH and used it to compute
explicitly the number fields cut out by the mod ` representations attached to the newforms of level 1 and
weight k for ` up to 31, and he was also able to use it to compute the coefficients ap of these forms mod `
for a few primes p of a thousand digits each. This is significant progress towards making efficient the Galois
representation side of the Langlands program. Besides, pieces of code and experience can be re-used for the
CLap–CLap project: explicit computations with modular jacobians, explicit computations in the homology and
cohomology of modular curves, interplay between the algebraic model of the jacobian and the analytic one,
reconstruction of algebraic numbers from approximations, stability of linear algebra algorithms over non-exact
domains, output certification machinery, to name a few.

Regarding the p-adic side, let us mention that Caruso, Roe and Vaccon recently design a new theory for
tracking precision optimally while computing with p-adic objects [32]. This promising theory has been already
successfully used for analyzing the loss of precision in many standard primitives (e.g. Gauss elimination,
Euclidean algorithm) and some more complex algorithms (e.g. Gröbner bases, p-adic differential equations).
No doubt that it will play a pivotal role in the CLap–CLap project as well.

1.1.2 p-adic Langlands correspondence

In 1998, Harris–Taylor [64] and independently Henniart [72], proved the local Langlands correspondence for
GLn(F ). Recall that it is (essentially) a correspondence between isomorphism classes of smooth (i.e. locally
constant) irreducible representations of GLn(F ) over C and isomorphism classes of certain n-dimensional
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smooth representations of the Weil–Deligne group of F over C. A few years later, Vignéras proved in [121]
that, if one replaces the Weil–Deligne group of F by Gal(F/F ), then for any prime number ` 6= p one can
reformulate this correspondence in terms of `-adic instead of smooth representations, i.e. there is a bijection
between isomorphism classes of continuous topologically irreducible unitary representations of GLn(F ) on an
`-adic Banach space and certain n-dimensional continuous `-adic representations of Gal(F̄ /F ) (both over a
finite extension of Q`). Here unitary means that the Banach topology is given by a norm which is invariant
under GLn(F ). The main point in the proof is that every continuous (admissible) representation of GLn(F ) on
an `-adic Banach space has a dense subspace of smooth vectors, i.e. fixed by a sufficiently small open compact
subgroup of GLn(F ). This ultimately implies that one can essentially derive this `-adic correspondence directly
by “completion” from the classical smooth one.

Replacing ` 6= p by ` = p is basically the aim of the p-adic Langlands program. However one can at
once point out big differences with the ` 6= p case. On the GLn(F ) side, continuous (admissible) unitary
representations of GLn(F ) on p-adic Banach spaces in general do not possess a dense subspace of smooth
vectors. They rather contain a dense subspace of locally Qp-analytic vectors (which are those vectors for which
the orbit map is a locally Qp-analytic function on GLn(F )) thanks to a hard theorem of Schneider–Teitelbaum
[112]. Therefore, one cannot only rely on the smooth correspondence as for ` 6= p, and any sort of relation
with n-dimensional continuous p-adic representations of Gal(F̄ /F ) is necessarily a new phenomenon. On the
Gal(F̄ /F ) side, there is a rich theory of finite dimensional p-adic representations (much richer than `-adic
representations when ` 6= p), mainly by the work of Fontaine, after Tate and others. So both theories on the
GLn(F ) and Gal(F̄ /F ) sides are richer, and somehow one hopes that these two phenomena are related. In
particular one hopes to recover (in a way or another) Fontaine’s theory on the GLn(F ) side. Finally, another
important aspect is that unitary Banach space representations of GLn(F ) by definition possess unit balls which
are preserved by the GLn(F ) action, and that one can reduce modulo p (or modulo an uniformizer of the
coefficient ring), thus producing (hopefully more amenable) smooth representations of GLn(F ) over finite
extensions of Fp.

To sum up, one has the following picture on the GLn(F ) side:

Locally analytic
representations

Unitary Banach
representations

Smooth modular
representations

reduction
modulo p

loc. analytic
vectors

Since 2000, mainly by the work of Colmez, following the initial work of Breuil and others, a full local
p-adic Langlands correspondence between (some) admissible unitary Banach space representations of GL2(Qp)
and 2-dimensional p-adic representations of Gal(Q̄p/Qp) has been established, and the above local picture is
essentially complete, that is, one can also describe the locally analytic and mod p representations of GL2(Qp)
[9, 10, 40, 6, 5, 79, 45, 42, 105, 53, 41]. This local p-adic Langlands correspondence satisfies moreover two
fundamental compatibilities without which it would have a limited interest: it is compatible with the classical
local Langlands correspondence and it is compatible with the global theory.

Compatibility with the classical local Langlands correspondence. When the 2-dimensional p-adic representation
ρp of Gal(Q̄p/Qp) is potentially semi-stable (which is basically the most important case!), one can then
associate to it using Fontaine’s theory a smooth 2-dimensional representation of the Weil–Deligne group of Qp,
which therefore corresponds to a smooth representation πp of GL2(Qp) by the classical local correspondence
(suitably normalised). When moreover the two Hodge-Tate weights a ≤ b of ρp are distinct, one can consider
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the following locally algebraic representation of GL2(Qp) (over a finite extension E of Qp) :

deta ⊗E Symb−a−1(E2)⊗E πp. (1)

Then one key property of the unitary Banach space representation of GL2(Qp) corresponding to ρp is that its
subspace of locally algebraic vectors is nonzero and isomorphic to (1) [41, 56].

Compatibility with the global theory. It turns out that arithmetic geometry provides natural p-adic Banach
spaces equipped with commuting continuous actions of both GL2(Qp) and Gal(Q̄/Q), the so-called completed
cohomology spaces (first considered by Ohta and Emerton):(

lim←−
m

lim−→
n

H1
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(
Y (Npn)Q̄,OE/pmOE

))
⊗OE

E

where E is a finite extension of Qp, N is prime to p and Y (Npn)Q̄ is the usual modular curve over Q̄ of full
level Γ(Npn). Let ρ : Gal(Q̄/Q)→ GL2(E) be a continuous, odd, absolutely irreducible, almost everywhere
unramified representation and assume that the ρ-isotypic subspace:
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(2)

is nonzero (e.g. this holds if ρ = ρf for some cuspidal eigenform f of weight ≥ 2 and prime-to-p level N).
Then one key property of the local p-adic correspondence is that (2) is isomorphic as a GL2(Qp)-representation
to a finite direct sum of the p-adic unitary Banach space associated to ρp = ρ|Gal(Q̄p/Qp) [11, 55, 56].

We now switch to the state of the art for other groups than GL2(Qp), more precisely to the part which is
relevant for this project. In fact, none of the previous results for GL2(Qp) have yet been fully extended to
other groups, for instance GL3(Qp), or GL2(F ) with F 6= Qp (not to mention GSp4(Qp), etc.), but there are
many partial nontrivial results on the mod p and locally analytic aspects. We briefly describe the state of the
art for these two aspects, which involve quite different techniques but are in the same time complementary.

The classification of admissible irreducible smooth representations of GLn(F ) over a finite extension of Fp
is a quite difficult question as soon as n > 2 or F 6= Qp. The main result of [73] reduces this problem to the
classification of the supersingular representations, i.e. those admissible irreducible representations which are
not subquotients of strict parabolic inductions. However, it is shown in [20] that, at least for n = 2, there are
far too many smooth admissible irreducible representations of GL2(F ) over a finite extension of Fp as soon as
F 6= Qp, killing the hope of a local correspondence with 2-dimensional irreducible representations of Gal(F̄ /F )

analogous to the F = Qp case. Moreover, the main result of [115] worsen the situation showing that, at least
when [F : Qp] = 2, none of these admissible irreducible supersingular representations of GL2(F ) are of finite
presentation, which means that one needs an infinite number of equations to define them. Such a situation in
representation theory seems unprecedented, and so far it is not clear how to deal with it. Should one work
in the context of derived categories? Should one only consider some specific representations of GLn(F ), e.g.
those which appear in a global context? Indeed, the Galois isotypic subspaces in the mod p cohomology (for
instance the analogue of (2) for n = 2 and quaternionic Shimura curves over a totally real field) do provide
some interesting specific smooth admissible representations of GLn(F ), and their GLn(OF )-socle has been the
subject of an extensive study over the recent years [59]. Moreover, these specific admissible representations
of GLn(F ) do seem to determine the local representation of Gal(F̄ /F ) [14, 113, 74, 103]. One crucial open
question however is that no-one knows if they are of finite length as soon as GLn(F ) 6= GL2(Qp).

Since one does not understand correctly mod p representations of GLn(F ), even those carried by the
mod p cohomology, one understands even less those p-adic Banach spaces representations of GLn(F ) carried
by the completed p-adic cohomology. However, there has recently been progress on their locally analytic
vectors. One reason is that locally analytic representations of GLn(F ) tend to have far more constituents than
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p-adic Banach spaces or mod p representations (e.g. they are related to Verma modules, which can have many
constituents with complicated multiplicities). Though one certainly doesn’t understand all the locally analytic
vectors of the completed cohomology, one understands enough to discover new and interesting phenomena.
For instance, the (finite slope part of the) locally analytic socle of the Galois- (or Hecke-) isotypic subspaces in
the crystalline case has been recently determined in [17], by using and studying the geometry of various rigid
analytic varieties called Eigenvarieties, which can be roughly seen as moduli spaces for p-adic overconvergent
automorphic forms of finite slope or for trianguline n-dimensional representations of Gal(F̄ /F ). The geometry
of these Eigenvarieties also led to almost optimal results on the classicality of overconvergent automorphic
forms whose Galois representation is crystalline at p ([15], [16], [17]). In quite another direction, there
has been results providing a localization of locally analytic representations quite analogous to the classical
localization of Lie algebra representations as D-modules on flag varieties [106, 76]. In the case n = 2, this
localization process already has had one application: the proof that those locally analytic representations
of GL2(F ) coming from the (dual of) the rigid analytic de Rham complex of the first Drinfeld covering are
admissible in the sense of [112].

1.2 Our objectives

The main goal of our project consists in finding new evidences towards the existence of a p-adic Langlands
correspondence beyond the nowadays well-established case of GL2(Qp). In order to carry out this project, we
plan to take inspiration from the very first works of Breuil when he tried to draw the picture of what should be
the p-adic Langlands correspondence in the case of GL2(Qp). Roughly speaking, one may say that his work
was a subtle association of three different approaches.

The first approach has consisted in studying separately 2-dimensional p-adic representations of Galois
groups and (torsion, locally analytic, Banach) p-adic representations of GL2(Qp) and, as a second step, in
trying to match them. As the best example, this strategy has worked perfectly well in the case of p-torsion
representations, yielding the first evidences in favour of the existence of a p-adic Langlands correspondence.
Indeed it turns out that both sides are indexed by the same parameters and therefore can be mapped bijectively
[9]. The second approach was to study deformation spaces1. The idea behind this is rather simple: if Galois
representations have to correspond to representations of GL2(Qp), the deformation spaces on both sides
should match. Breuil and Mézard followed this idea and came up with the famous Breuil–Mézard conjecture
which states an unexpected relation between numerical invariants attached to Galois deformation spaces
and other numerical invariants coming from the theory of representations of GL2(Qp) [19]. The Breuil–
Mézard conjecture nowadays appears as one of the most important corner stones in the p-adic Langlands
correspondence. Finally, it is widely expected that the Langlands correspondence should be realized in the
cohomology of Shimura varieties which carries at the same time a Galois action and an action of a reductive
group. To look for a p-adic correspondence for GL2(Qp) in the completed cohomology of modular curves
forms the third approach [11]. After Breuil’s seminal work, this approach was developed by Emerton who
managed to derive from it spectacular results and applications [55, 56].

As mentioned before, we plan to follow a similar strategy in the setting of this project, i.e. for a reductive
group which is not GL2(Qp). Precisely, we plan to pursue the three following objectives :

• Objective 1: Locally analytic aspects for GLn(F )

This objective aims at understanding better the locally analytic representations of GLn(F ) where F is a
finite extension of Qp and at trying to match (some of) them with n-dimensional p-adic representations
of Gal(F̄ /F ). (Note that the Galois side is actually rather well understood via p-adic Hodge theory.)

1In fact this approach really took shape later, with the work of Colmez, Emerton and Kisin [40, 55, 79].
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• Objective 2: Deformation spaces

This objective aims at studying several deformation spaces on both sides and at trying to compare them.
More results are expected on the Galois side for which the technology is much better established. We
nevertheless plan to work on the GLn-side as well and expect to obtain precise descriptions in the
simplest cases (e.g. deformations of parabolic inductions).

• Objective 3: Hilbert and Siegel modular forms

This objective aims at understanding the cohomology of Hilbert and Siegel modular varieties (which are
among the simplest Shimura varieties beyond modular curves). As a matter of priority, we plan to focus
on Galois representations associated to Hilbert and Siegel modular newforms since there are simplier
objects which can be handled more easily.

Each of the above objectives focuses on a limited set of pieces of the giant puzzle of the p-adic Langlands
program and is supposed to shed partial light on the correspondence. From this angle it seems quite clear that
these different objectives will have rather deep interconnections.

In order to carry out our project, we plan to make an intensive use of computers and algorithmical methods.
Of course, we plan to use computers as a daily “collaborator” in order to perform routine calculations and
computing small examples. This will help us a lot in building a good intuition and testing conjectures. However
we also plan to go further in this direction and write optimized SAGEMATH packages for solving specific
interesting problems (e.g. the computation of Galois representations associated to Hilbert modular forms)
and share them with the community. These packages will also allow us to compute a huge amount of new
examples and feed usual databases (e.g. LMFDB, http://www.lmfdb.org/).

We refer to §2.1 for much more details.

1.3 National and international positioning of the project

The local p-adic Langlands correspondence was born in France 10 years ago and, since then, it has been a
peak of excellence of French mathematical research. In few years it has become a major subject of research all
over the world with a positive financial politic (especially in the US) in order to invite and keep the raising
stars in the field. Similarly France has a strong tradition in symbolic computation, highly recognized all over
the world (see for instance the list of accepted papers at the ISSAC conference). The goal of the CLap–CLap
project is to give the opportunity to French scientists to maintain their position as pioneers in this flourishing
field of research.

The CLap–CLap team gathers French experts with a worldwide network of ongoing collaborations:
X. Caruso with the Massachusetts Institute of Technology (USA) and the University of Waterloo (Canada),
L. Berger with the University of Münster (Germany) and the University of Tokyo (Japan), C. Breuil and S. Morra
with the University of Toronto (Canada) C. Breuil and B. Schraen with the University of Münster (Germany),
F. Lemma with Osaka University (Japan), S. Morra with the University of Arizona and Northwestern (USA)
and KIAS (South Corea), ... With the Clap-CLap project we aim at keeping and further expanding our position
as worldwide leaders.

The explicit Langlands correspondence is an important emerging subject. As a prominent example, note
that a special trimester intitled “Computational Aspects of the Langlands Program” was organized at Brown
University two years ago. Beyond that, every year, almost 100 conferences on arithmetic geometry take place.
About 25% of them are directly related to p-adic Langlands program, witnessing how groundbreaking this
subject is to the world mathematical community.

The explicit p-adic Langlands correspondence is a very new aspect connecting two different communities
which have no chance to meet in the 75 conferences scheduled in arithmetic geoemtry in 2016. Much more
than a p-adic numerical version, it is a promising and already successful new subject of research.
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2 Scientific and technical program, project organisation

2.1 Detailed research project

We now give more details on our research project according to the three main objectives defined in §1.2. For
each objective we isolate about half a dozen precise tasks. Moreover we evaluate and indicate the difficulty of
each task using the following score:

: one can expect a complete solution for this task (main tools are already available in the literature);

: one can expect huge progress on this task but some corner cases might remain out of reach;

: one can expect substantial progress on this task but probably not a complete solution.

Dependances between the different tasks appear on the Gantt diagram, page 15.

Before detailing each objective, we state a transversal task which is pivotal in the project since p-adic rigid
geometry is nowadays ubiquitous in almost all topics of the p-adic Langlands correspondence.

Task T0.1 — DIFFICULTY:
Design and implement optimized algorithms for manipulating p-adic rigid varieties.

We plan to attack Task T0.1 by combining two ingredients: first, the recent works of Vaccon on p-adic Gröbner
bases [120] and second, the classical theory of standard bases which deals with formal series over the reals.

Since p-adic geometry has a huge interest beyond the p-adic Langlands correspondence, we would like
to spend some time to optimize and package our implementation. We will then propose it for inclusion in
SAGEMATH.

2.1.1 Objective 1: Locally analytic aspects for GLn(F )

Thanks to the recent results mentioned at the end of §1.1.2, many questions and problems arise of various
difficulties. We mention several of them in what follows. If r : Gal(F/F )→ GLn(kE) is a continuous local
Galois representation, we recall that there exists a rigid analytic variety Xtri(r) defined in [70] and [15, §2.2]
which is (essentially) a moduli space for (refined) trianguline deformations of r. It comes with a rigid analytic
morphism towards the “extended” weight space, that is, the rigid analytic variety parametrising the locally
analytic characters of the diagonal torus of GLn(F ).

Task T1.1 — DIFFICULTY:
Generalize the adjunction formula of [12] for the locally analytic Jacquet–Emerton functor first from
finite length locally algebraic representations (of the Levi subgroup) to more general finite length locally
analytic representations (using results of Orlik–Strauch), and then in families.

Task T1.2 — DIFFICULTY:
Extend the results on the locally analytic socle and on companion points of [16], [17] from crystalline
representations of Gal(F/F ) to more general trianguline representations, using (and generalizing) the
local model of [17]. Stratify the rigid variety Xtri(r) in terms of these (generalized) companion points
and study the properties of this stratification.

Task T1.3 — DIFFICULTY:
Prove new cases of the locally analytic “Breuil–Mézard–Kisin–Emerton–Gee” conjecture of [17] relating
the locally analytic socle to the geometry of fibers over the weight space of the rigid variety Xtri(r). This
conjecture is known in the crystalline case [17], but the more general trianguline situation is open. This
task should be closely related to Task T1.2.
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Task T1.4 — DIFFICULTY:
Using the local model of [17], study explicitly the singularities of the rigid variety Xtri(r) at classical
crystalline critical points. If n = 2, it is smooth, and if n = 3, one can prove by computing explicit equa-
tions that the only possible singularity is a determinantal singularity (in particular it is not Gorenstein).
Can one obtain similar results in higher dimension, possibly with the help of a computer?

Task T1.5 — DIFFICULTY:
Determine, at least conjecturally, the whole finite slope part of the completed cohomology in the
crystalline case, where, by definition, the finite slope part is the maximal subrepresentation such that all
its irreducible constituents are subquotients of locally analytic principal series. Recall that its socle is
known (in the crystalline case). Note that, for n ≥ 3, the finite slope part might involve Galois parameters
because constituents of its socle might reappear “in the middle” (as what happens with K(1)-invariants
of mod p cohomology in recent results of Le-Le Hung-Morra).

Task T1.6 — DIFFICULTY:
Extend the conjectures of [13] on the finite slope part in the semi-stable noncrystalline case. In particular,
starting from a local continuous representation r : Gal(Q̄p/Qp) → GLn(E) which is semi-stable of
Steinberg type (that is, such that Nn−1 6= 0 on Dst(r), N being the monodromy operator), define a
locally analytic representation of GLn(Qp) that has a chance both to sit inside the completed cohomology
and to completely determine the Hodge filtration on Dst(r).

Task T1.7 — DIFFICULTY:
Extend the admissibility results of [106] (for locally analytic representations of GL2(F ) coming from
the isotypic subcomplexes of the de Rham complex of the first Drinfeld covering of the p-adic upper
half plane) first from the first covering to any Drinfeld covering, and then from dimension 2 to arbitrary
dimension n using the results of [76].

The above list is clearly not exhaustive. For instance one can also study the question of the existence of
invariant norms on irreducible locally analytic representations of GLn(F ), e.g. on those appearing in the
locally analytic socle (see Task T1.2 above), which includes the case of locally algebraic representations (see
[23, §5]), or the (more interesting and harder) question of the multiplicity of the irreducible constituents in
the locally analytic socle (in the crystalline case).

2.1.2 Objective 2: Deformation spaces

The p-adic local Langlands program for GLn(F ) calls for a correspondence between certain n-dimensional
p-adic representations of the absolute Galois group GF and certain p-adic representations of GLn(F ). Thus if
two representations are related by the correspondence, certainly also their universal deformation rings should
be related. The purpose of this Objective is to search for “numerical” evidences of this matching by computing
(and comparing) deformation spaces on both side.

We first focus on the Galois side. Let E be a sufficiently large extension of Qp, OE be its rings of integers
and kE be its residue field. Given a representation ρ̄ : GF → GLd(kE) (assumed absolutely irreducible for
simplicity), a characted ψ : GF → O×E and a Weil–Deligne representation t, Kisin constructed a ring Rψ(t, ρ̄)

whose E-valued points are in bijection with the lattices inside semistable representations of determinant ψ,
Hodge–Tate weights {0, 1} for each embedding, Galois type t and that reduces to ρ̄ modulo the maximal
ideal. Kisin’s strategy was to construct an auxiliary space Kψ(t, ρ̄) which is a formal scheme parametrizing
semi-linear algebra objects called Breuil–Kisin modules and then build SpfRψ(t, ρ̄) from it. Kisin’s construction
yields a morphism f : Kψ(t, ρ̄)→ SpfRψ(t, ρ̄) which can be thought of as a partial resolution of singularities.
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Kisin proved moreover that f induces an isomorphism over the generic fibre.
Caruso, David and Mézard revisited these ideas in order to obtain an explicit description of Rψ(t, ρ̄) when

ρ̄ has dimension 2 and the Galois type t is tamely ramified [30, 31]. The first step of their strategy is to
study the special fibre of Kψ(t, ρ̄), a so-called Kisin variety. In the second step, inspection of the specialization
morphism from generic fibre to special fibre allows them to describe a geometric construction of a candidate
for Rψ(t, ρ̄)[1/p].

Task T2.1 — DIFFICULTY:
Make the construction of [31] more explicit: find the equations of the candidates described in loc.cit,
exhibit a natural integral subring in it (a candidate for Rψ(t, ρ̄)) and describe its special fibre.

Focusing on the special fibre is relevant because we already know a lot about it thanks to the Breuil–Mézard
conjecture —which is proved in this setting [63]. Checking if these properties hold then appears as a good test
for our candidates.

We then plan to study other various situations: in higher dimension, with higher Hodge–Tate weights
and/or with wildly ramified Galois types. We plan to rely on Fargues’ point of view on Kisin modules [58],
which elucidates most of the theoretical side of the question (though it involves more complicated modules
which are consequently more difficult to implement). We split our research project into two tasks.

Task T2.2 — DIFFICULTY:
Initiate a more systematic study and explicit description of Kisin varieties, which notably includes the
treatment of other reductive groups than GLn.

Task T2.3 — DIFFICULTY:
Compute moduli spaces of Breuil–Kisin–Fargues modules, glue them and guess candidates for the (generic
fibre of the) corresponding Galois deformation rings. In the simplest examples, this task could be attacked
by carrying all computations on computers after Task T0.1 will be completed.

In a work in progress, Le, Le Hung, Levin and Morra constructs a geometrical object, called a “local model”, in
which Kisin varieties and Galois deformations rings live. This “local model” has one more important feature: it
naturally reveals the notion of Serre’s weights and then connects the Galois side to the GLn-side in the spirit
of the Breuil–Mézard conjecture (and eventually will provide a proof of it). For us, it can serve as a good test
for our candidates:

Task T2.4 — DIFFICULTY:
For each candidate found in T2.3, embed it in the aforementioned “local model” and compare the Serre’s
weights obtained this way with those predicted by the Serre-type conjectures.

All the complexity of the resolution f : Kψ(t, ρ̄) → SpfRψ(t, ρ̄) comes from the fact that the finite flat
group scheme which gives rise to a Galois representation is not uniquely determined. In order to understand
the underlying phenomena, we may want to consider first an analogue in equal characteristic, which is
supposed to be simpler. Kisin varieties are then replaced by moduli spaces of integral models of a given
Dieudonné module MF defined over a complete discretely valued field F . The latter naturally lives in the
affine Grassmannian and is likely within reach.

Task T2.5 — DIFFICULTY:
Construct the aforementioned moduli space P (MF ) as a closed subspace of the Greenberg space of level
n of the affine Grassmannian Gr. For bounded level in the ind-system, compute an explicit description
(e.g. equations) for this moduli space.

In order to understand the geometry and topology of P (MF ), we promote the point of view of buildings.
We embed our space inside the Bruhat-Tits building B(GLn). In the paper [47], a similar space for models of
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an isocrystal β is studied and described as a suitable neighbourhood of a skeleton identified with the building
B(J) where J = Aut(β). This leads to address the following.

Task T2.6 — DIFFICULTY:
Find a similar building-theoretic description of P (MF ) in terms of the group of semi-linear automorphisms
of the module MF . Study the components and the singularities of P (MF ) in light of this description.

On the GLn(F )-side, we would like to develop further the deformation theory for smooth mod p repre-
sentations π̄ of GLn(F ) or more general p-adic reductive groups. Suppose for simplicity that π̄ has trivial
endomorphisms. In contrast to the Galois side, the structure theory for the deformation ring Rπ̄ is still in its
infancy and not much is known besides the case of GL2(Qp). Recent progress is made, relying on results in
[65], for the structure of Rπ̄ when π̄ is a parabolically induced representation of GLn(F ) [68] or a generalized
Steinberg representation [69].

Task T2.7 — DIFFICULTY:
Find explicit descriptions (e.g. equations) of the deformations ring Rπ̄ in the simplest non-trivial cases
and match them with those obtained on the Galois side.

2.1.3 Objective 3: Hilbert and Siegel modular forms

The guideline of this objective is to design efficient algorithmical solutions for dealing with cohomology of
some Shimura varieties in which the p-adic Langlands correspondence should be realized. In such a general
setting, this question seems completely unreachable with the current technology. That is why we shall only
focus on particular cases, namely that of Hilbert and Siegel modular varieties. Even under this additional
restriction, it turns out that the relevant spaces of cohomology are generally quite large (e.g. they have infinite
dimension over kE), so that we cannot hope to embrace it as a whole on a computer. Nevertheless they admit
interesting finite dimensional Galois invariant subspaces, which are cut out by Hilbert or Siegel modular
eigenforms. Designing algorithms for computing these subspaces now appears as a rather realistic (but still
ambitious) research project.

Before coming to Hilbert of Siegel modular forms, we focus on the case of classical modular forms.
Following a method devised by Couveignes and Edixhoven in [54], Mascot recently designed an efficient
algorithm for computing the Galois representations attached to certain modular newforms. Nevertheless,
Mascot’s algorithm has two important misfeatures regarding the application we have in mind: (1) it does not
work when the level is divisible by p and (2) it only deals with p-torsion coefficients. Our first tasks will be to
remove these limitations.

Task T3.1 — DIFFICULTY:
Extend Mascot’s algorithm for allowing levels which are divisible by p.

Task T3.2 — DIFFICULTY:
Extend Mascot’s algorithm to more general torsion coefficients, that are OE/πnEOE for n > 1.

We expect the Task T3.1 to be straightforward. Indeed the current version of Mascot’s algorithm does already
allow any level in weight 2 and standard theorems should allow us to reduce the general case to that one. For
Task T3.2, we plan to argue by induction on n and use Monge’s explicit results in Local Class Field Theory
[97] for the heredity step. Indeed, if ρn : Gal(Q̄p/Qp) → GL2(OE/πnEOE) is the Galois representation we
want to compute and Ln is the extension cutted out by ker ρn, it turns out that L2n/Ln is an abelian group
whose Galois group is explicit. By explicit Local Field Theory, one should be able to describe L2n from the
knowledge of Ln and encode it in a compact form.

We now move to Hilbert modular forms for which our program is quite similar.
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Task T3.3 — DIFFICULTY:
Let f be a Hilbert newform over a totally real number field F and let ` be an auxiliary prime number
(which may be equal to p). Adapt Mascot’s algorithm to compute the mod ` reduction of the `-adic
representation

ρf,` : Gal(F̄ /F ) −→ GL2(Kf ⊗Q`) (3)

attached to f , where Kf denotes the number field spanned by the Hecke eigenvalues of f .

Let us now discuss briefly our ideas on Task T3.3. Assuming for simplicity that ` 6= p, we can combine a weight-
lowering argument (as in the classical case, cf. [14, lemma 2.9]) and the Jacquet–Langlands correspondence
in order to prove that residual representations of the form (3) are afforded in the `-torsion of the jacobian of a
Shimura curve defined over F , where they can thus be “captured”. These curves are quotients of the upper
half-plane by cocompact fuchsian groups attached to an order in a quaternion algebra over F . They are thus
extremely similar to modular curves. The algorithms developed in Page’s PhD thesis [101] can determine
fundamental domains for these curves. These are basically the inputs that will allow us to extend Mascot’s
algorithm to the Hilbert case. Some new difficulties are nevertheless expected. For example the lack of cusps
would prevent us from using Khuri–Makdisi’s algorithms for computing in the jacobian of the aforementioned
curves. One should however be able to tackle this issue by replacing cusps with CM points as in Voight–Willis’
works [123].

The case of Siegel modular forms seems much more difficult to handle because Siegel varieties have
dimension greater than 1 and their geometry has not been completely elucidated (from the algorithmic point
of view) yet. The following task then appears as a unavoidable prerequisite.

Task T3.4 — DIFFICULTY:
Find an explicit and usable description of Siegel varieties and sheaves of modular forms on them equipped
with their Hecke action (at least for small genus).

Similar questions were already addressed by several authors [61, 107, 8, 126] but we plan to revisit it using
Mumford theory of theta functions. We are convinced that this new approach has the potentiel to lead to
breakthrough results. Indeed theta functions are directly related to Siegel modular forms (they actually are
Siegel modular forms and they can be used to generate them all [80]) and recent works explicit the Hecke
action on them [62, 125]. Furthermore quite efficient algorithms for computing and manipulating theta
functions on computers were designed and implemented [57, 89].

Task T3.5 — DIFFICULTY:
Given an auxiliary prime number `, compute the mod ` representation attached to a Siegel modular
newform.

2.2 Work program and resources requested

Members of the project We recall that we have divided our research project into three different objectives. The
table presented in Figure 1 (page 13) shows the people involved in the CLap–CLap ANR project distributed
according to their node affiliation and their involvement in the project, according to the objectives we have
defined. Moreover, we plan to collaborate occasionally with other colleagues dissiminated all around the
world: Eugen Hellmann (Münster, Germany), Florian Herzig (Toronto, Canada), Cédric Pépin (Paris, France),
Peter Schneider (Münster, Germany), Takeshi Tsuji (Tokyo, Japan), Tristan Vaccon (Limoges, France), etc.

Work program. The three objectives on which this project focuses are at the same time interconnected and
rather self-contained. For this reason, we plan to work on each objective separately. For each objective, a
leader will be named at the beginning of the project. His/her task will be to supervise the research related to
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Rennes node Paris node Lyon node
Head: X. Caruso Head: A. Mézard Head: S. Rozensztajn

Objective 1
Xavier Caruso
Tobias Schmidt

Christophe Breuil
Julien Hauseux
Ariane Mézard
Benjamin Schraen

Laurent Berger
Gabriel Dospinescu
Stefano Morra

Objective 2

Xavier Caruso
Agnès David
Matthieu Romagny
Tobias Schmidt

Christophe Cornut
Ariane Mézard

Gabriel Dospinescu
Stefano Morra
Sandra Rozensztajn
Dajano Tossici

Objective 3

Xavier Caruso
Reynald Lercier
David Lubicz
Christophe Ritzenthaler

Francesco Lemma
Jean-Marc Couveignes
Gabriel Dospinescu
Stefano Morra

Figure 1: Members of the CLap–CLap project

this objective and to communicate on it. We think that, for each objective, the research may start from the
beginning and last until the end of the project.

We plan to develop a highly performant inter-objective communication. To this end, we will organize one
inter-objective meeting per year which (at least) three members per objective (including the leader) will attend.
These meetings will be the place to report on progress and share ideas on the one hand, and a unique chance
to bring closer two communities who are not used to work together. In the same direction, we would like to
give the opportunity to each member of the CLap–CLap ANR project to visit or invite his/her collaborators.

In order to disseminate our results among the community, we plan moreover to organize at least two
international conferences. The first one will be part of the thematic semester “Correspondences” organized by
the Henri Lebesgue Center (CHL); it will be held in Rennes in September 2019. In addition, we shall apply
for a trimester at IHP in 2022 dedicated to p-adic Langlands correspondence. This trimester will provide us
facilities for inviting key people from all over the world and organizing intensive working sessions between us.
This trimester will cultimate in June 2022 with the final conference of the CLap–CLap project.

The table on the left of Figure 2 (page 14) summarizes the events we plan to organize.

As already mentioned, we plan to make an intensive use of computers for carrying out our research.
However computers may also help us in organizing collaborative work and we plan to develop this point.
Precisely, if the project is accepted, we will install a friendly interface — probably based on a mixture of
COCALC, CHARLATEX and GIT and/or taking advantage of the solutions provided by the public french network
MATHRICE — for helping us in writing papers and developing code. We emphasize that we would like to avoid
relying on private companies (as GOOGLE or DROPBOX) as much as possible.

Resources requested. In order to carry out our research project with success, we estimate our total needs
(including salaries) to about 2600 ke. Detailed justifications are provided in the joinded financial document.
Among this total amount of money, we request a funding of 232 ke from the ANR.

This funding will be used for different purposes. First of all, we plan to offer one one-year post-doctoral
position during the 48 months of the project, to be released at the University of Rennes 1. The nominee will
join our team and will be consider as a full member of the project. Depending on his/her qualifications and
personal preferences, he/she will join the group working on objective 2 or 3 (or both). We emphasize that the
members of the CLap–CLap ANR project are qualified to masterfully supervise this position.
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Date Place Event
Oct 2018 Lyon Inter-objective meeting:

starting workshop
Sep 2019 Rennes Conference at CHL semester
Jun 2020 Bordeaux Inter-objective meeting:

focus on PARI and SAGEMATH

Mar 2021 CIRM (?) Inter-objective meeting
Spring 2022 Paris Trimester IHP

Rennes Paris Lyon
node node node

Post-doc 50 ke – –
Traveling & Visiting 20 ke 15 ke 15 ke
Workshops – 20 ke 20 ke
Conferences 5 ke 30 ke –
Equipment 6 ke 7 ke 7 ke
Support free publication 5 ke – 5 ke
Support colloques 4 ke 3 ke 3 ke
Total 90 ke 75 ke 50 ke
University part 7 ke 6 ke 4 ke
Total TTC 97 ke 81 ke 54 ke

232 ke

Figure 2: Planified events (on the left) and budget (on the right) of the project

In addition the funding will be used to organize the aforementioned inter-objective meetings and let the
members of the CLap–CLap project attend conferences and invite or visit collaborators. On average, we
estimate that each member of the project would use the latter possibility once per year. On the contrary, the
two aforementioned international conferences will be mostly supported by specific independant fundings: the
Centre Henri Lebesgue will support the mid-term conference in September 2019 and we will request fundings
to the IHP to support the final trimester.

The members of the CLap–CLap project all strongly believe that free publication is very important for the
exemplary development of academic research. For this reason, we want to be able to support all initiatives in
this direction (e.g. Mersenne’s platform).

The table on the right of Figure 2 summarizes the approximative repartition of the requested fundings.

3 Project impact, strategy for valorisation

Scientific, social and economical context

French research in Mathematics holds a world-leading position. The French scientific system is also particularly
well connected at an international level. Young PhD of CLap–CLap ANR members got many post-doctoral
opportunities in the best departments of mathematics where arithmetic geometry is advanced: King’s College,
Imperial College, University of Toronto, University of Warwick... From Chicago to London, going through
Bonn, the French school of arithmetic geometry is well known and very frequently invited for long terms visits.
It then often have to opportunity to disseminate the ideas of the p-adic Langlands program which is really
born under French auspices ten years ago.

Unfortunately, the French lattice is not as well organized as the English, German or American systems.
Despite its major role, the French school of mathematics keeps its austere recluse reputation. We don’t even
have strength to recruit post-doctoral students or long terms visiting researcher, to organize annual meetings
with the key speakers, to be sure to have a PhD grant early enough to be competitive with the American
Graduate school (which may guarantee the PhD grant before the end of the Master). CLap–CLap ANR members
have played a full part to ensure proper dissemination of their fields and results (no local recruit, incentive to
independence of the students, wide and diversified publications...) but now need to be structured in order to
achieve new scientific advances.

Within a few decades, computers have profoundly changed everyday life of people and mathematiciens in
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particular; recall that the latter used to write papers on a typewriter and did not know electronic mail just
30 years ago. It turns out that computer science is continuing its expansion very quickly. Algorithmics and
symbolic computation (which are certainly the two most relevant domains in relation with the CLap–CLap
project) have become major topics in computed science and are today actively developed. They nowadays
provide softwares which are more and more powerful, easy to use and can manipulate more and more
complicated mathematical objects. Beyond that, there were recent spectacular progresses in many other
domains of computer science as cryptography, formal verification, formal proof, artificial intelligence, etc.

We are convinced that this rapid expansion will undoubtedly change once again the everyday life of
mathematicians within the next decades. For instance, it is quite possible that the verification of the correctness
of the mathematical contents of papers will be soon left to computers (at least for the easiest parts). However
many “pure” mathematicians are still ignoring these deep transformations and continue to work as they always
did without taking advantage of the complete power of softwares and computers. One important objective of
the CLap–CLap project is to participate in filling this gap.

Project impact

The CLap–CLap ANR project is a very ambitious research program of constructive and algorithmic approach
of p-adic theory. The aim of the CLap–CLap ANR project is to bring together the necessary competence
to achieve several ambitious targets. It gathers a large team of experts in several complementary fields
from fundamental algebraic geometry to applied arithmetics. All the aspects of p-adic Hodge theory are
represented: p-adic geometry, automorphic forms, Shimura varieties, integral lattices, representations theory,
Galois representations...

The originality of this project is to put together experts of fundamental p-adic theory and implementation
strategies. The goal is to pursue simultaneous progress and to compare the two approaches to inspire,
guide new developments. The expected results are even all new fundamental theoretical knowledge and the
diffusion of creative original ideas. Our intuition will be guided by explicit computations: using SAGEMATH

implementations, we are convinced we will be able to determine new deep phenomena in less than two years.
The CLap-CLap project is a new step to put closer computer and researchers. Computer will be used to produce
datas, objects of researchers in abstract mathematics too.

One other important aim of the CLap–CLap project is to generalize the use of algorithmical methods in
number theory and especially in the Langlands program. We believe that we have to potential for initiating
and accelerating this transformation. Indeed our team is composed of the present young (at most 50 years)
and the next generations of professors and directors of research. Most of them are responsible for training
Graduate students in a major French Institutions (University of Rennes, École Polytechnique, École Normale
Supérieure de Lyon, University of Bordeaux, University of Paris Sud, University Pierre and Marie Curie...) and
all are convinced and engaged to promote that computational approach is essential in the scientific training
as weel as in the research in future. The impact force in France of our teams of young professors is very
important: all together, we are able to reach more than 200 French students in Master of Mathematics. We
will systematically expose them to a systematic use of computer as an everyday ally for a successful research
activity.

The CLap–CLap project gathers the most famous french mathematicians working in the topics of p-adic
Langlands correspondence and computer algebra. It then has the ambition to become an unavoidable actor in
these domains. It will moreover contribute to the organization of the French research lattice. It will allow
to develop the scientific cohesion of the three poles Lyon–Rennes–Paris during the two first years. During
the third year, we will crystallize all the national p-adic strengh united around a commun project of trained
trimester. The last year of the project will be magnified through this trimester (2022) and its aftershocks.
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Strategy of valorisation

CLap–CLap ANR members will make a special effort to disseminate their results. Publications will be a
priority goal of this project. Graduate students will be enrolled to the internal workgroups. These workgroups
have vocation to crystallise all the potential local energies in the field. The members of the CLap–CLap
project are renowned mathematicians who are often invited to international conferences. They will use these
opportunities to report on the progress of the CLap–CLap project and try to convince collegues to rely more
on computers for their research. As already discussed in §2.2, we will further organize two international
conferences and one CLap–CLap trimester where the most influent number theorists will be invited. Talks and
software demonstrations highlighting our works will be presented there.

We will maintain a website offering many attractive features and functionalities. We plan for instance to
provide user-friendly solutions in order to allow everybody to test our softwares online without needing to
install them. We will also maintain databases gathering all our “numerical” results and design a user-friendly
web interface for requesting them.

Caruso is the bearer of an original project of short scientific videos introducing briefly an interesting topic
in mathematics (see http://www.lebesgue.fr/5min). We will import there ideas into the framework of the
CLap–CLap project: as a concrete example we plan to produce a short video (about 15 minutes) presenting
each new contribution (papers and softwares) developed by the members of the CLap–CLap project.
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