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In this appendix, we show how the theory presented by Breuil in [1] and developed by Kisin in [2] and
[3] gives us the possibility to obtain very quickly a analogue statement to Corollary 3.50 of [4]. Although
our approach is certainly more efficient, it has at least two defects. First, it forces us to assume R complete
and its residue field perfect. Therefore, the situation that we will considerer in this appendix is slightly less
general than the one discussed in the paper. Second, we do not obtain an explicit description of models of
(Z/p2Z)K , but instead we describe some objects of linear algebra which correspond to these models through
Breuil-Kisin theory.

Statement of the main theorem. Let us fix notation. Let p be a prime number (not necessarily odd) and
k a perect field of characteristic p. We denote by W = W (k) (resp. Wn = Wn(k)) the ring of Witt vectors
(resp. of truncated Witt vectors) with coefficients in k and K0 its fraction field of W . For any integer n,
Wn[[u]] is endowed with a continuous (for the u-adic topology) rings endomorphism φ defined as the usual
Frobenius on Wn and by φ(u) = up. Let’s fix a totally ramified extension K of K0 of degree e and an
uniformizer π of K. We denote by E(u) the minimal polynomial of π over K0 and R the ring of integers of
K. This one corresponds to the d.v.r. considered as base ring in Tossici’s paper.

Let Modφ
/W2[[u]] denote the following category:

• objects are W2[[u]]-modules M with no u-torsion endowed with a continuous (for the u-adic topology)
φ-semi-linear endomorphism (called Frobenius) φM : M → M whose image generates a sub-module
containing E(u)M;

• morphisms are the W2[[u]]-linear maps which commute with Frobenius.

In [2] and [3], Kisin have constructed an anti-equivalence of categories between Modφ
/W2[[u]] and the category

of finite, flat and commutative R-group schemes annihilated by p2. For our aims, an important property of
the latter anti-equivalence will be the following: if M is the object of Modφ

/W2[[u]] associated to a group scheme
G, then M[1/u] completely determines the Galois representation G(K̄) (where K̄ is an algebraic closure of
K), i.e. the generic fiber of G. From this fact, it is easy to prove that G is a model of (Z/p2Z)K if and only
if M[1/u] is isomorphic to W2((u)) endowed with the usual Frobenius. We are going to prove the following
result, which is the exact analogue in our context of Corollary 3.50 of [4].

Theorem 1. Let M be the object Modφ
/W2[[u]] associated to a finite flat R-group scheme whose generic fiber

is isomorphic to (Z/p2Z)K . Then, there exist n, m ∈ N, a ∈ k[[u]] satisfying e
p−1 ≥ m ≥ n ≥ 0 and

φ(a) ≡ 0 (mod un)(1)

ue−m(p−1)φ(a)− uea ≡ F (u)um (mod upn)(2)

together with two elements e1 and e2 in M such that:
i) M is generated over W2[[u]] by e1 and e2 with the unique relation um−ne1 = pe2;
ii) Frobenius is given by φ(e1) = un(p−1)e1 and φ(e2) = um(p−1)e2 +

[
u−nφ(a)− um(p−1)−na

]
e1.

Furthermore n, m and (a mod un) are uniquely determined by the isomorphism class of M.
Conversely, any triple (n, m, a) satisfying (1) and (2) comes from a finite flat R-group scheme whose

generic fiber is isomorphic to (Z/p2Z)K .

The last assertion of the Theorem is easy: one just need to check that the φ-module M defined by conditions
i) and ii) is actually an object of Modφ

/W2[[u]]. From now on, we concentrate ourselves to the proof of the rest
of the Theorem.
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Proof of existence. Let M be a φ-module over W2[[u]] such that M[1/u] is isomorphic to W2((u)) endowed
with the usual Frobenius. Let us denote by M1 the kernel of the multiplication by p on M and M2 = M/M1.
It is easy to verify that they are both modules over W1[[u]] = k[[u]] with no u-torsion. Moreover they inherit
endomorphisms φM1 and φM2 whose images still generate a module which contains E(u)M1 = ueM1 and
E(u)M2 = ueM2 respectively. In the following, we will write φ for φM, φM1 and φM2 .

Lemma 2. The module M1 is free of rank 1 over k[[u]]. Moreover, there exists a base (e1) of M1 and an
integer n ∈ [0, e

p−1 ] such that φ(e1) = un(p−1)e1.

Proof. Since k[[u]] is a discrete valuation ring, the fact that M1 has no u-torsion implies that its freeness.
Moreover, it is certainly of rank 1 because M1[1/u] is isomorphic to the kernel of the multiplication by p
on W2((u)), that is k((u)). Let x be any basis of M1. From above it follows that we can consider it as an
element of k((u)). We can write x = uny where y is invertible in k[[u]]. Then, if we set e1 = un, it is a basis
of M1 and we have φ(e1) = unp = un(p−1)e1 as expected. �

In the same way it is possible to prove that M2 = k[[u]]ē2 with φ(ē2) = um(p−1)ē2 for some integer
m ∈ [0, e

p−1 ]. Let e2 ∈ M be any lifting of ē2. Clearly it is a generator of M[1/u] as W2((u))-module. We
deduce that

(3) e1 = pu−δαe2

where δ is an integer and α is invertible in W2[[u]]. In fact, α is defined modulo pW2[[u]], so that we may
(and will) consider it as an element of k[[u]]. The fact that e1 generates M1 easily implies δ ≥ 0. Moreover,
since φ(e2) ≡ um(p−1)e2 (mod p), applying φ to (3), we obtain

φ(e1) = pu−pδφ(α)φ(e2) = pum(p−1)−pδφ(α)e2.

Therefore φ(e1) = u(m−δ)(p−1) φ(α)
α e1. Comparing with φ(e1) = un(p−1)e1, we obtain m−δ = n and φ(α) = α.

The first condition gives δ = m− n (and in particular m ≥ n), while the second one implies α ∈ F?
p. So, up

to replacing e1 by e1
α , we may assume α = 1.

We have just proved that M is generated by two vectors e1 and e2 related by (3) with α = 1. This is exactly
what appears in the statement of Theorem 1. We also know that φ(e1) = un(p−1)e1. It still remains to precise
the shape of φ(e2). Let z denote the image of e2 ∈ M[1/u] through the isomorphism M[1/u] ' W2((u)).
From φ(ē2) = um(p−1)ē2, we deduce that, up to multiplying e2 by a (p − 1)-th root of unity, we can write
z = um + pa, with a ∈ k((u)). After some calculations, we obtain

φ(e2) = um(p−1)e2 +
[
u−nφ(a)− um(p−1)−na

]
e1 = um(p−1)e2 + be1.

Hence RHS have to be in M, which gives directly (1) (using m ≥ n). Now, using E(u)M ⊂ 〈φ(e1), φ(e2)〉
(where the notation 〈 · · · 〉 means the generated submodule), we find that there exist x, y ∈ W2[[u]] such that

E(u)e2 = xun(p−1)e1 + y(um(p−1)e2 + be1).

Reducing modulo p, we have y = ue−m(p−1) + py′ for some y′ ∈ W2[[u]]. Since x and y′ are defined modulo p,
one may consider them as elements of k[[u]]. After some calculations, we get F (u) = bun−pm+e + xupn−m +
y′um(p−1) where F (u) is defined by the equality E(u) = ue + pF (u). As m ≥ n, we have m(p− 1) ≥ pn−m.
This shows that the equality we obtained is equivalent to the congruence bun−pm−e ≡ F (u) (mod upn−m).
Replacing b by its expression, we finally obtain (2). It remains to prove that a is an element of k[[u]] (a priori,
we only know that it belongs to k((u))), but it is clear from (1).

Proof of unicity. Let M and M′ be two φ-modules presented as in Theorem 1 with parameters (n, m, a)
and (n′,m′, a′) respectively. We want to prove that M and M′ are isomorphic if and only if n = n′, m = m′

and a ≡ a′ (mod un). Let us assume that there exists an isomorphism f : M → M′. Since φ acts by
multiplication by un(p−1) (resp. un′(p−1)) on M1 = ker p|M (resp. M′

1 = ker p|M′), we get n = n′. In fact,
examining the action of φ on e1 and e′1 it is easy to see that there exists α ∈ F?

p such that f(e1) = αe′1. In
the same way, regarding actions of φ on quotients M/M1 and M′/M′

1 , we have m = m′. Then, equalities
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um−ne1 = pe2 and um−ne′1 = pe′2 give f(e2) = αe′2 + xe1 for some element x ∈ k[[u]]. A little calculation
shows that the compatibility with φ implies

αu−nφ(a′)− αum(p−1)−na′ + φ(x)un(p−1) = xum(p−1) + αu−nφ(a)− αum(p−1)−na,

which gives φ(t) = um(p−1)t where we set t = α(a′−a)+unx. Comparing u-adic valuations of both sides, we
see that any solution t has to be divisible by um. As m ≥ n, we have a ≡ a′ (mod un) as wanted. Conversely,
if a ≡ a′ (mod un), it is sufficient to set α = 1 and x = a−a′

un to obtain an isomorphism f : M → M′.
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