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Abstract

Given a finite extension K{F of degree r of a finite field F, we enumerate all selfdual

skew cyclic codes in the Ore quotient ring Ek :“ KrX;Frobs{pXrk
´ 1q for any positive

integer k coprime to the characteristic p (separable case). We also provide an enumeration

algorithm when k is a power of p (purely inseparable case), at the cost of some redundancies.

Our approach is based on an explicit bijection between skew cyclic codes, on the one hand,

and certain families of F-linear subspaces of some extensions of K. Finally, we report on an

implementation in SageMath.
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1 Introduction

Among linear codes, cyclic codes enjoy a rich algebraic structure as they are defined as ideals of

quotient polynomial rings. This structure endows them with good properties (encoding, decoding, dual-

ity, dimension, distance, length). In the paper of Boucher, Geiselmann and Ulmer from 2006 [BGU06],

cyclic codes are generalized by considering left ideals in Ore polynomial rings rather than in polynomial

rings, obtaining thus a much larger class of linear codes called skew cyclic codes. In the present article,

following their work, we study the selfdual property of these codes.

Let K{F be an extension of finite fields of degree r. Let θ : K Ñ K be the Frobenius x ÞÑ xq where q

denotes the cardinality of F. We consider the Ore polynomial ring KrX; θs, defined as the set of classical

polynomials equipped with the standard addition and the twisted multiplication derived from the law

Xκ “ θpκqX where κ is any element of K. Skew cyclic codes are by definition left ideals of a quotient of

the form Ek :“ KrX; θs{pXrk
´ 1q. We notice that cyclic codes correspond to the special case of skew

cyclic codes where r “ 1.

The ambient space Ek is equipped with a bilinear form coming from the coordinatewise bilinear form

on the vector space Krk, namely

˜

kr´1
ÿ

i“0

aiX
i,

kr´1
ÿ

i“0

biX
i

¸

ÞÑ
ÿ

0ďiărk

aibi.

It thus makes sense to consider duality of skew cyclic codes. The topic was studied by Boucher among

others. In her paper [Bou16], an enumeration of selfdual skew cyclic codes for r “ 2 and for a prime

field F, is given. In a subsequent article [BBB20], an enumeration of selfdual skew cyclic codes for any

nonnegative integer r, for k “ 1 and for a prime field F, is provided. In their conclusion, the authors

suggest to further count and enumerate all selfdual skew cyclic codes for any values of the order r and

of the degree k and for any finite base field F. In the present paper, we give a complete answer to this

question when the characteristic p of F is odd and k is coprime to it (separable case). We also study

the case when k is a p-th power (purely inseparable case) and obtain partial result in this case, our

enumeration algorithm suffering from some redundancy.

As we will show in Subsection 2.1, r has to be even for selfdual skew cyclic codes to exist. We thus

set r “ 2s. We first consider the separable case, i.e. we assume that k is coprime with p. For the

purpose of stating our main results, we write FrY s{pY k
´1q as a product of field extensions of F, namely

FrY s{pY k
´ 1q “

ś

1ďlďn Fl where each Fl corresponds to an irreducible factor of Y k
´ 1. We let yl

denote the image of Y in Fl and we set Kl :“ K bF Fl. We also consider the involution τ acting on the

indices l induced by the involution Y ÞÑ 1
Y

on the irreducible factors of Y k
´ 1.

Let I be the subset of indexes l P t1, . . . , nu which are fixed by τ and let Ieucl (resp. Iherm) be the

subset of I consisting of indexes l such that yl “ ˘1 (resp. yl ‰ ˘1). Let also J be the set of the

nontrivial orbits of τ , tl, τplqu over the remaining indexes l P t1, . . . , nuzI. Finally, for each l, we denote

by VpKl{Flq the set of Fl-vector subspaces of Kl. When l P Ieucl (resp. l P Iherm), we shall further equip

Kl with a Fl-bilinear Euclidean (resp. Hermitian) form; we let SeuclpKl{Flq (resp. ShermpKl{Flq) denote

the set of isotropic subspaces of Kl of dimension s :“ r{2. Our main theorem is as follows.
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Theorem 1.1 There exists an explicit bijection between the set of selfdual skew cyclic codes in Ek and

the cartesian product of sets Wpal ˆ Wnonpal, where:

Wpal “
ź

lPIeucl

SeuclpKl{Flq ˆ
ź

lPIherm

ShermpKl{Flq

Wnonpal “
ź

tl,τplquPJ

VpKl{Flq

As a byproduct, we get the following counting of selfdual skew cyclic codes of Ek.

Theorem 1.2 We assume that the caracteristic of F is odd. Then

• if k is even, there are no selfdual skew cyclic codes in Ek,

• if k is odd, there exist selfdual skew cyclic codes in Ek if and only if s is even or q ” 1 pmod 4q.

Moreover, when selfdual codes exist, their number is given by

ź

lPIeucl

s´1
ź

i“0

´

qil ` 1
¯

ˆ
ź

lPIherm

s´1
ź

i“0

´

q
i`1{2
l ` 1

¯

ˆ
ź

tl,τplquPJ

r
ÿ

k“0

pqrl ´ 1q . . .
`

qr´k`1
l ´ 1

˘

`

qkl ´ 1
˘

. . . pql ´ 1q

where ql denotes the cardinal of Fl.

We also study the question of finding explicitely selfdual skew cyclic codes in Ek in odd characteristic.

First of all, we describe algorithms, with polynomial complexity in k and r, for generating randomly

such a code, with uniform distribution. We then move to the question of complete enumeration. Since

selfdual skew cyclic codes are quite numerous (their number grows exponentially with respect to r), it

sounds not that interesting to design an algorithm that outputs the complete list of such codes in one

shot. Instead, we describe a routine that outputs a new code each time it is called with the guarantee

that all codes will show up–and show up only once–at the end of the day. The cost of each indivual call

to our algorithm is again polynomial in k and r.

Our method looks robust in the sense that we are confident that it could be adapted to other sit-

uations, e.g. even characteristic or negacyclic (or more generally, constacyclic) codes instead of cyclic

codes. However, addressing the inseparable case where k is not coprime to p using analogue methods

seems more delicate (although probably doable). In this paper, we outline a different method for enu-

merating all purely inseparable selfdual skew cyclic codes, for which k is a power of the characteristic p,

by multiplying properly twisted separable selfdual skew cyclic codes with each other as described and

illustrated by hand of SageMath computations in Section 4. This enumeration method could easily be

used in combination with the enumeration method of the separable case to solve the general inseparable

enumeration problem. However, it is not optimal as it comes with redundancies.

Organization of the paper. In Section 2, we define selfdual skew cyclic codes. Then, under

the separability hypothesis that k is coprime to p, we relate the skew algebra Ek to a product of

matrix algebras, and we transport the bilinear structure of Ek onto matrices. In Section 3, we use this

reinterpretation to count selfdual skew cyclic codes and to generate them efficiently. In Section 3.5, we

Page 3



Selfdual skew cyclic codes

report on an implementation of our algorithms and provide some numerical experiments. The source

code of the SageMath implementation is available at this location:

https://plmlab.math.cnrs.fr/caruso/selfdual-skew-cyclic-codes

In Section 4, we sketch an enumeration algorithm for purely inseparable selfdual skew cyclic codes, in

the case where k is a power of p. Finally we provide computation results for the enumeration of purely

inseparable skew cyclic codes.

Conventions and notations. Throughout this paper, we will use the following notation:

• EndRpV q denotes, for any ring R and R-module V , the endomorphism ring of R-linear endomor-

phisms of V .

• MatR,rˆr denotes, for any ring R, the matrix ring of r ˆ r square matrices with entries in R.

• M tr denotes the transpose of the matrix M .

• id denotes the identity morphism.

• GLnpF q denotes the general linear group of the vector space Fn over the finite field F .

• Lσ denotes the subfield of L fixed by the automorphism σ.

• V K denotes the orthogonal of the vector subspace V .

If F be a finite field, equipped with an involutive automorphism σ, we recall that a σ-sesquilinear form

B of a F -vector space V is an additive map B : V ˆ V Ñ F such that

Bpλu, µvq “ λ ¨ σpµq ¨ Bpu, vq @u, v P V, @λ, µ P F

In this paper, we will consider four different types of sesquilinear forms:

• (Euclidean case) σ “ id and B is symmetric, i.e. Bpu, vq “ Bpv, uq for all u, v P V ,

• (skew-Euclidean case) σ “ id and B is antisymmetric, i.e. Bpu, vq “ ´Bpv, uq for all u, v P V ,

• (Hermitian case) σ ‰ id and B is symmetric,

• (skew-Hermitian case) σ ‰ id and B is antisymmetric.

We recall that, when B is nondegenerate, the ring EndF pV q of F -linear endomorphisms of V is equipped

with an involutive anti-automorphism f ÞÑ f‹ characterized by

@u, v P V, B
`

u, f‹
pvq

˘

“ B
`

fpuq, v
˘

It is called the adjunction relative to B. We recall that pf ` gq
‹

“ f‹
` g‹ and pf ˝ gq

‹
“ g‹

˝ f‹ for

f, g P EndF pV q. Moreover, the adjoint of the scalar multiplication by an element a P F is the multi-

plication by σpaq. The adjoint construction allows finally to endow EndF pV q itself with a sesquilinear

pairing, defined by ⟨f, g⟩ “ Tracepf ˝ g‹
q.
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2 From skew cyclic codes to finite geometry

2.1 Definition of skew cyclic codes

Let F be a finite field of cardinality q and characteristic p. Let K be a finite extension of F of degree r.

Let θ : x ÞÑ xq be the Frobenius automorphism of K. We build the quotient of the free K-algebra K⟨X⟩

by the noncommutative relation: @κ P K, Xκ “ θpκqX. We then localize it at the powers of X. This

results in the Ore Laurent polynomial ring KrX˘1; θs. As shown in [Jac96, Theorem 1.1.22], its center

is FrXs X KrX˘r
s “ FrX˘r

s. For any f P FrX˘r
s, we can thus form the quotient KrX˘1; θs{pfpXqq,

which keeps a ring structure. We will call skew quotient algebra the algebra KrX˘1; θs{pfpXqq over its

center.

Remark 2.1 As a quotient ring of the left and right Euclidean domain of skew Laurent polynomials,

KrX˘1; θs, any skew quotient algebra is a left and right principal ideal ring.

We now move to the definition of selfdual skew cyclic codes. For any nonnegative integer k, Xrk
´ 1

is in the center of KrX˘1; θs. We can thus form the quotient ring Ek :“ KrX˘1; θs{pXrk
´1q. Choosing

for any element of Ek the unique lift in KrX; θs Ă KrX˘1; θs of degree strictly less than kr defines an

isomorphism of K-vector spaces λ : Ek Ñ Krk.

Using the classical Hamming distance d on the K-vector space Krk, we define the Hamming distance

D between two elements f and g of Ek by Dpf, gq “ dpλpfq, λpgqq.

Definition 2.2 Given α P F˚, skew α-constacyclic codes are left ideals of KrX˘1; θs{pXrk
`αq endowed

with the metric D. Skew cyclic codes (resp. skew negacyclic codes) are skew α-constacyclic codes for

α “ 1 (resp. α “ ´1).

We are interested in the skew cyclic code duality for the coordinatewise bilinear form, defined on

Krk by
`

pxiq0ďiărk, pyiq0ďiărk

˘

ÞÑ
ÿ

0ďiărk

xiyi

We note that this bilinear form is nondegenerate.

Definition 2.3 A skew cyclic code is said self-orthogonal (resp. selfdual) if λpIq Ă λpIq
K (resp. if

λpIq “ λpIq
K).

As we have dimpλpIqq `dimpλpIq
K

q “ r, a necessary condition for selfdual skew cyclic codes to exist

is that r is even.

2.2 The evaluation isomorphism El

We now place ourselves in the separable case, where k is coprime to p. It is then known that Ek is a

semisimple algebra (see [Wis91, Proposition 20.7]). As Ek is finite-dimensional over F, classical results

imply that it is a cartesian product of matrix algebras over finite field extensions of F. Hereunder, we

describe an explicit isomorphism realizing this decomposition.
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We note Y :“ Xr and decompose Y k
´ 1 as a product of irreducible polynomials PlpY q over F. We

set Fl :“ FrY s{PlpY q, Kl :“ KrY s{PlpY q and let yl denote the image of Y in Kl. We extend θ to an

automorphism of Kl by letting it act trivially on yl. We have a first decomposition

Ek » KrY,X; θs{pY k
´ 1, Xr

´ Y q

»

¨

˝

KrY,X; θs
ś

1ďlďn

PlpY q

˛

‚{pXr
´ Y q “

ź

1ďlďn

KlrX
˘1; θs{pXr

´ ylq. (2.1)

We set Ẽ
plq
k “ KlrX

˘1; θs{pXr
´ ylq and now study each Ẽ

plq
k separately. We observe that Kl is a finite

étale extension of the finite field Fl, i.e. a finite product of finite extensions of Fl. As it has finite

cardinality, the norm map NormKl{Fl
is surjective; hence, there exists an element xl in Kl satisfying

NormKl{Fl
pxlq “ yl. The change of variables X ÞÑ xlX defines an isomorphism

EvalxlX : Ẽ
plq
k

„
ÝÑ E

plq
k :“ KlrX

˘1; θs{pXr
´ 1q.

On the other hand, we have an evaluation morphism X ÞÑ θ:

Evalθ : E
plq
k ÝÑ EndFlpKlq

P pXq ÞÑ P pθq

Composing both maps, we obtain a third morphism El : Ẽ
plq
k Ñ EndFlpKlq. Applying it to each term

Ẽ
plq
k of the decomposition (2.1), we finally end up with a map relating Ek to a product of matrix algebras.

Proposition 2.4 The map
`

El

˘

lPt1,...,nu
: Ek ÝÑ

ź

1ďlďn

EndFlpKlq

is an isomorphism of F-algebra.

Proof. (See also [Jac96, Theorem 1.3.12].) By Artin’s lemma, the family pθiq0ďiăr is linearly indepen-

dent. This proves the injectivity of El. As the dimension (over Fl) of its domain and the codomain are

both r2, surjectivity follows. The final evaluation map resulting from the composition of the chinese

remainder isomorphism with the product of isomorphisms Evalxlθ is thus an isomorphism.

Remark 2.5 To compute the evaluation isomorphism El, a fast computation of preimages by the norm

is needed. One possible method consists in finding an irreducible factor of the skew polynomial Xr
´ yl

in KlrX; θs. An algorithm for this task is described in [CL17].

Remark 2.6 By the Skolem-Noether theorem, the isomorphism El is uniquely defined up to conjugacy

by an element of norm 1, i.e. up to another choice of xl as preimage of yl by the norm map.

Page 6



Selfdual skew cyclic codes

2.3 Adjunctions on Ek and related spaces

In this subsection, we construct an alternative F-bilinear pairing on Ek and show that it induces the

same orthogonals than the coordinatewise bilinear form considered previously. Our variant is interesting

because it will in turn induce a pairing on the simpler spaces E
plq
k .

We begin by defining an adjunction on Ek. We start from the following F-linear automorphism on

KrX˘1; θs

KrX˘1; θs
˚

ÝÑ KrX˘1; θs

f “
ř

i fiX
i

ÞÑ f˚
“

ř

i X
´ifi

It is an involution. One moreover checks that it is an anti-morphism, i.e. it satisfies pfgq
˚

“ g˚f˚

for all f, g P KrX˘1; θs. Indeed, by linearity, it is enough to check the desired property when f and g

are monomials, which is a direct computation. We observe that the adjoint pXrk
´ 1q

˚ is a multiple of

Xrk
´ 1 itself. The adjunction thus preserves the two-sided ideal generated by Xrk

´ 1; therefore, it

passes to the quotient to define an anti-automorphism of Ek. In a slight abuse of notation, we continue

to write f˚ when f P Ek. Since the adjunction is an anti-automorphism, we underline that it maps left

ideals of Ek to right ideals.

We now define a nondegenerate bilinear form corresponding to this adjunction. We recall to this end

that the evaluation of a skew polynomial f “
řN

i“0 fiX
i of KrX; θs at 1 is defined by fp1q :“

řN
i“0 fi.

This definition passes again to the quotient Ek. For f, g P Ek, we then set

xf, gy :“ TraceK{Fppfg˚
qp1qq P F.

It is readily seen that f ÞÑ f˚ satisfies the adjunction formula, in the sense that

xf, ghy “ TraceK{Fppfpghq
˚

qp1qq “ TraceK{Fpppfh˚
qg˚

qp1qq “ xfh˚, gy

for any f, g, h P Ek. Denoting by IK the orthogonal of I Ă K, we have the following compatibility

property.

Proposition 2.7 For any left ideal I of Ek, we have λpIK
q “ λpIq

K.

Proof. Let I be a left ideal of Ek. An element g of Ek is orthogonal to I if and only if

TraceK{Fppfg˚
qp1qq “ 0 for all f P I. This holds if and only if TraceK{Fppκfg˚

qp1qq “ 0 for all κ P K

and all f P I. By nondegeneracy of TraceK{F, the condition is further equivalent to pfg˚
qp1q “ 0 for all

f P I. This boils down finally to the orthogonality condition on Krk, namely
ř

0ďiăkr λpfqiλpgqi “ 0

for all f P I.

In what follows, we prefer working with the pairing x´,´y because it corresponds to sesquilinear

trace forms on the Fl-algebras E
plq
k . We now describe them.

Definition 2.8 We say that a polynomial is palindromic if the set of its roots in an algebraic closure

of its base field does not contain zero and is stable under the inversion map x ÞÑ 1
x
. Equivalently a

polynomial
řn

i“0 pix
i is palindromic if it is collinear to its reciprocal polynomial

řn
i“0 pn´ix

n´i.
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We recall that we have the decomposition F rY s{pY k
´ 1q »

ś

1ďlďn

F rY s{PlpY q »
ś

1ďlďn

Fl.

Definition 2.9 We define a map τ : t1, . . . , nu Ñ t1, . . . , nu by the relation Pτplqp 1
yl

q “ 0.

As the polynomial Y k
´ 1 is palindromic and separable, the index τplq exists, and τ is obviously

involutive. Furthermore, we let σ be the endomorphism of F -algebras of FrY s{pY k
´ 1q defined by

Y ÞÑ 1
Y

. It is also involutive. Moreover it induces an isomorphism σl : Fl Ñ Fτplq and we have

σlpylq “ yτplq. The tensor product id b σl defines an involutive isomorphism Kl Ñ Kτplq extending σl.

For simplicity, we will keep the notation σl for id b σl.

The next proposition shows that the adjunction behaves nicely with respect to the decomposition

Ek “
śn

l“1 Ẽ
plq
k we have established in Equation (2.1).

Proposition 2.10 The adjunction f ÞÑ f˚ induces “partial” adjunctions Ẽ
plq
k Ñ Ẽ

pτplqq

k , which are

explicitly given by the formula

degPl´1
ÿ

i“0

fiX
i

ÞÑ

degPl´1
ÿ

i“0

X´iσlpfiq, @fi P Kl. (2.2)

Moreover, the “global” adjunction can be recovered by taking the product of the partial ones.

Proof. Let Ql be the idempotent element of F rY s{pY k
´ 1q Ă Ek corresponding to the factor Fl, i.e.

the element defined by the congruences Ql ” 1 pmod Plq and Ql ” 0 pmod Pl1 q whenever l1 ‰ l. As

automorphisms respect congruences, we have Q˚
l “ σpQlq “ Qτplq. Besides Ẽ

plq
k “ QlEk “ EkQl. We

thus have Ẽ
plq
k

˚
“ pQlEkq

˚
“ EkQ

˚
l “ EkQτplq “ Ẽ

pτplqq

k . The explicit formula (2.2) is derived after

noticing that f˚
i “ σlpfiq for fi P Kl. Finally, the last statement of the proposition is clear.

We now aim at describing how the adjunction is transformed by the evaluation isomorphisms El.

For this, the first step is to understand its effect on E
plq
k (without the tilde) which, we recall, is defined

as E
plq
k “ KlrX; θs{pXr

´ 1q. The adjunction f ÞÑ f˚ again passes to the quotient and determines a

well-defined adjunction E
plq
k Ñ E

pτplqq

k , that we continue to denote f ÞÑ f˚. Unfortunately, the latter is

not exactly what we need; we are now going to fix this issue by defining a twisting version of it. For

this, we first define zl :“ xl ¨ στplqpxτplqq P Kl.

Lemma 2.11 There exists a family of nonzero elements ζl P Kl such that θpζlq “ zlζl and σlpζlq “ ζτplq

for all l.

Proof. Since σl ˝ στplq “ id, we have σlpxl ¨ στplqpxτplqqq “ xτplqσlpxlq, which ensures that zl is in-

variant under σl. Furthermore, we observe that NormKl{Fl
pzlq “ yl ¨ στplqpyτplqq “ 1. Hence, the

Hilbert 90 Theorem guarantees the existence of an element ζl of K˚
l such that θpζlq “ zlζl and hence

zlX “ ζ´1
l Xζl. Moreover, as automorphisms of finite fields commute, σlpζlq satisfies θpσlpζlqq “ zlσlpζlq.

Set ζ 1
l :“ ζl ` στplqpζτplqq, so that we have σlpζ

1
lq “ ζ 1

τplq. If ζ 1
l ‰ 0, it satisfies zlX “ ζ 1

l
´1

Xζ 1
l as well. On

the contrary, if ζ 1
l “ 0, we have στplqpζτplqq “ ´ζl. In this case, σl is nontrivial and so yτplq ‰ ˘1. As

ζl
yl

satisfies also θ
`

ζl
yl

˘

“ zl
ζl
yl

, the element ζ2
l :“ ζl

yl
` στplq

` ζτplq

yτplq

˘

“ ζl
`

1
yl

´ yl
˘

is nonzero and satisfies

zlX “ ζ2
l

´1
Xζ2

l . Since we moreover have σlpζ
2
l q “ ζ2

τplq, the lemma is proved.
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Remark 2.12 The element ζl can be efficiently computed using the following formula from the proof

of the Hilbert 90 Theorem: it can be chosen as the multiplicative inverse of any nonzero element in the

image of the endomorphism
ř

0ďiăr

ś

0ďjăi θ
j
pzlqθ

i.

Definition 2.13 For f P E
plq
k , we set f‚ :“ pζlfζ

´1
l q

˚
“ ζ´1

τplqf
˚ζτplq P E

pτplqq

k .

Lemma 2.14 For all f P Ẽ
plq
k , we have f˚

pxτplqXq “ fpxlXq
‚.

Proof. By additivity, it is enough to check the formula when f is the monomial κXi. We thus have

f˚
“ X´iσlpκq and so

f˚
pxτplqXq “ X´iσlpκq

˜

i´1
ź

t“0

θtpxτplqq

¸´1

fpxlXq
‚

“

˜

κ
i´1
ź

t“0

θtpxlqX
i

¸‚

“ pzτplqXq
´iσl

˜

κ
i´1
ź

t“0

θtpxlq

¸

.

We conclude by noticing that
śi´1

t“0 θ
t
pzτplqq “

śi´1
t“0 θ

t
pxτplqqσl

´

śi´1
t“0 θ

t
pxlq

¯

.

Following the isomorphism E
plq
k » EndFlpKlq and its counterpart for τplq, we find that the adjunction

f ÞÑ f‚ induces another anti-isomorphism EndFlpKlq
‚

ÝÑ EndFτplq
pKτplqq. We are now going to prove

that the latter is the adjunction map associated to some explicit bilinear map. Precisely, we introduce

the twisted bilinear trace form

Kl ˆ Kτplq ÝÑ Fl

pκ, ρq ÞÑ pκ, ρqFl :“ TraceKl{Fl
pζl ¨ κ ¨ στplqpρqq

(2.3)

In the palindromic case, we have Kτplq “ Kl and we observe that the above pairing is Euclidean when

yl “ ˘1 and Hermitian otherwise. In all cases, the bilinear form p´,´qFl is nondegenerate and hence

identifies Kl with the dual of Kτplq.

Proposition 2.15 The involutive isomorphism ‚ is the adjunction relative to p´,´qFl , i.e.

pfpκq, ρqFl “ pκ, f‚
pρqqFl , @f P EndFlpKlq, @κ P Kl, @ρ P Kτplq.

Proof. We write f “
ř

0ďiďr´1 fiθ
i with fi P Kl and compute

pfpκq, ρqFl “

r´1
ÿ

k“0

θk
˜

ζl ¨ στplqpρq ¨

r´1
ÿ

i“0

fiθ
i
pκq

¸

“

r´1
ÿ

i“0

r´1
ÿ

k“0

θk`i

ˆ

ζl ¨ θ´i
pfiq ¨

θ´i
pζlq

ζl
¨ θ´i

pστplqpρqq ¨ κ

˙

“

r´1
ÿ

k“0

θk
˜

r´1
ÿ

i“0

ζl ¨ θ´i
pfiq ¨ θ´i

pζlστplqpρqq ¨ ζ´1
l ¨ κ

¸

“ TraceKl{Fl
pζl ¨ στplqpf‚

pρqq ¨ κq “ pκ, f‚
pρqqFl

which is exactly what we want.
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Finally, composing the morphisms X ÞÑ xlX and X ÞÑ θ, we obtain the following commutative

diagram:

Ẽ
plq
k E

plq
k EndFlpKlq

Ẽ
pτplqq

k E
pτplqq

k EndFτplq
pKτplqq

f ÞÑf˚

X ÞÑxlX

f ÞÑf‚

X ÞÑθ

adjunction for p´,´qFl

X ÞÑxτplqX X ÞÑθ

(2.4)

where we note that the composite of the horizontal maps is El on the top, and Eτplq on the bottom.

2.4 Vector space duality

In the previous subsections, we reduced the problem of finding selfdual skew cyclic codes in Ek to

that of finding selfdual skew cyclic codes in the product of the EndFlpKlq. We will now further reduce

this problem to that of finding maximal isotropic Fl-vector spaces of Kl in the palindromic case and of

Kl ˆ Kτplq in the nonpalindromic case.

To this end, we apply the classical duality between Fl-vector subspaces of Kl and left ideals of

EndFlpKlq [Ber]. Let us recall it briefly. Given a field F and a finite dimensional F -vector space W ,

the vector space duality associates to every F -vector subspace V of W , the left ideal IV of EndF pW q

formed by the endomorphisms vanishing on V . Dually, it associates to every left ideal I of EndF pW q,

the intersection of the kernels of the morphisms in I. With formulas, it can be expressed as

I ÞÑ VI “
č

fPI

kerpfq,

V ÞÑ IV “
␣

f P EndF pW q |V Ă kerpfq
(

.

This duality defined an order-reversing one-to-one correspondence between the set of left ideals

of EndF pW q and the set of F -vector subspaces of W . Moreover, for all V Ă W , we have

dimF IV “ pdimF W ´ dimF V q ¨ dimF W .

We now assume in addition that we are given an involution σ : F Ñ F and that W is endowed with

a nondegenerate σ-sesquilinear form. We recall that this datum equips EndF pW q with a sesquilinear

form as well. In particular, taking orthogonals over W and EndF pW q makes sense.

Proposition 2.16 For all subspace V of W , we have IK
V “ IV K .

Proof. Given f P IV and g P IV K , we have f ˝ g‹
“ 0 since f vanishes on V and im g‹

“ pker gq
K

Ă V .

Therefore f and g are orthogonal in EndF pW q. It follows that IK
V Ă IV K . The equality follows by

comparing dimensions.

We are now ready to apply what precedes to codes and prove the main theorem of this section.

Theorem 2.17 There exists an explicit bijection between the set of selfdual skew cyclic codes of Ek

and the cartesian product of sets Wpal ˆ Wnonpal, where:

• Wpal is the cartesian product, over the set I of indexes invariant under τ , of the sets of isotropic

Fl-vector subspaces of Kl of dimension r{2,
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• Wnonpal is the cartesian product, over the set J of all remaining nontrivial orbits of τ , of the sets

of Fl-vector subspaces of Kl.

Proof. By what we have done in previous subsections, selfdual codes in Ek are in bijection with left

ideals of the cartesian product
n
ź

l“1

EndFlpKlq

that are equal to their orthogonal. Besides, the orthogonal of an ideal can be taken component by

component, with the care that the orthogonal of the l-th component lies in the τplq-th component.

Therefore, when τplq “ l, the l-th component must be selfdual itself whereas, when τplq ‰ l, the

component at position l can be anything but it determines the component at position τplq. Using

now the vector space duality, we can further replace ideals of EndFlpKlq by Fl-subspaces of Kl. This

operation preserves the orthogonality condition as the vector space duality commutes with orthogonals.

We finally conclude by noticing that a subspace of Kl which is equal to its orthogonal is nothing else

than an isotropic subspace of half dimension, that is of dimension r{2.

3 Counting and generating selfdual skew cyclic codes

We keep the notation introduced before. In particular, we recall that K{F is an extension of finite

fields of degree r and that Ek “ KrX; θs{pXkr
´1q (where θ : x ÞÑ xq with q “ Card F). Besides, we set

Y “ Xr and assume that k is coprime with r. Under this hypothesis, the polynomial Y k
´1 is separable

and we write down its decomposition as a product of irreductible factors Y k
´ 1 “ P1pY q ¨ ¨ ¨PnpY q. We

recall also that we have introduced an involution τ : t1, . . . , nu Ñ t1, . . . , nu defined by the condition

that the roots of Pl and the inverses of the roots of Pτplq. In Subsection 2.2, we proved that we have an

isomorphism of the form

Ek »

s
ź

l“1

KlrX; θs{pXr
´ ylq »

s
ź

l“1

EndFlpKlq

where Fl “ FrY s{PlpY q, Kl “ KbFFl “ KrY s{PlpY q and yl is the image of Y in Kl. In Subsection 2.3,

we showed that this decomposition preserves orthogonality in some precise sense. This allowed us to

conclude (see Theorem 2.17) that enumerating selfdual skew cyclic codes sitting in Ek boils down to

enumerating maximal isotropic Fl-vector subspaces of Kl when τplq “ l (palindromic case), and to

enumerating Fl-vector subspaces of Kl otherwise.

In this section, we rely on this theoretical result, first, to count skew cyclic codes and, second, to

construct them explicitely. More precisely, we shall address two different problems: that of random

generation and that of complete enumeration.

Throughout this section, we assume that the caracteristic of F is odd.
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3.1 Existence criterion

By Theorem 2.17, there exist selfdual codes in Ek if and only if for each l such that τplq “ l,

the space Kl admits a totally isotropic subspace of dimension s :“ r{2. We then aim at providing

simpler conditions for this property to hold. For this, we shall use Witt’s decomposition theorem as a

fundamental tool. Let us recall it briefly. Let F be a field of odd characteristic, and let σ : F Ñ F be

a ring homomorphism which is an involution (possibly the identity). Let also V be a finite dimension

vector space over F , endowed with a σ-sesquilinear form B : V ˆ V Ñ F . We recall that a hyperbolic

pair is a pair of vectors pu, vq of V satisfying Bpu, uq “ 0, Bpv, vq “ 0 and Bpu, vq “ 1, and that the

2-dimensional subspace of V spanned by a hyperbolic pair pu, vq is called a hyperbolic plane.

Theorem 3.1 Keeping the previous notation, there exists an invariant d (called the Witt index of V )

and hyperbolic planes H1, . . . , Hd such that one has the orthogonal decomposition

V »

˜

à

1ďiďd

Hi

¸

‘ W

where W is a subspace that does not contain any nonzero isotropic vector.

Moreover, the dimension of any maximal isotropic space is equal to d.

Proof. See for instance [Art11, Theorem 3.11].

When F is a finite field, more can be said. For simplicity, we assume that dimV “ 2s. If σ ‰ id,

the Witt index of V is always s. On the contrary, when σ “ id, it can be either s or s´1 but we can

decide between those two values by looking at the discriminant δV of V (defined as the determinant of

the matrix of B is some basis); precisely, the Witt index is s if and only if p´1q
sδV is a square in Fˆ.

(See [Sch85, Theorem 3.3] for more details.)

In our case, Theorem 2.17 tells us that we are looking for isotropic vectors of dimension s in Kl; we

recall from Equation (2.3) that the latter is endowed with the sesquilinear form

pκ, ρqFl “ TraceKl{Fl
pζl ¨ κ ¨ στplqpρqq

where στplq : Kτplq Ñ Kl is the map induced by στplqpY q “ 1
Y

and ζl is an element of Kl defined in

Lemma 2.11. We then need to compute the discriminant δζl of this sesquilinear form.

Lemma 3.2 We assume that σl “ id and we let δKl{Fl
be the discriminant of the extension Kl{Fl

(which is, by definition, the discriminant of the bilinear form pκ, ρq ÞÑ TraceKl{Fl
pκρq). Then

1. the discriminant δζl is equal to NormKl{Fl
pζlq ¨ δKl{Fl

,

2. the discriminant δKl{Fl
is a square in Fl if and only if the degree of the extension rFl : Fs is even,

3. if yl “ 1 (resp. yl “ ´1), NormKl{Fl
pζlq is a square (resp. is not a square) in Fl.

Proof. 1. We fix a basis of Kl over Fl and write Matpζlq for the matrix representing the multiplication

by ζl in this basis. Then δζl “ det pMatpζlq
tr

q ¨ δKl{Fl
“ NormKl{Fl

pζlq ¨ δKl{Fl
.
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2. From Kl “ K bF Fl, we deduce that δKl{Fl
“ δK{F P F. Moreover, we know that δK{F is a square in

F if and only if the Galois group of K{F is a subgroup of the alternating group (see [Mil20, Corollary

4.2]), which never occurs in our situation given that GalpK{Fq is a cyclic group of even cardinality. We

conclude that δK{F is a square in Fl if and only if the extension Fl{F has even degree.

3. We assume that yl “ ˘1 and compute

NormKl{Fl
pζlq

q´1
2 “

ˆ

ζ
ř

0ďiă2s qi

l

˙

q´1
2

“
`

ζq´1
l

˘

ř

0ďiă2s qi

2 “
`

xlσlpxlq
˘

ř

0ďiă2s qi

2

As yl “ ˘1, the automorphism σl is the identity and so NormKl{Fl
pζlq

q´1
2 “ yl. We conclude by applying

Euler’s criterion.

Corollary 3.3 We assume that the caracteristic of F is odd.

1. If k is even, there are no selfdual skew cyclic codes in Ek.

2. If k is odd, there exist selfdual skew cyclic codes in Ek if and only if p´1q
s is a square in F, if and

only if s is even or q ” 1 pmod 4q.

Proof. We first notice that, whenever yl ‰ ˘1, there is no obstruction to the existence of an isotropic

subspace of half dimension. On the contrary, when yl “ 1 (resp. yl “ ´1), it follows from Lemma 3.2

that an isotropic subspace of K of dimension s exists if and only if p´1q
s is a square (resp. is not a

square) in F.

When k is even, the decomposition of Ek exhibits both factors KrX; θs{pXr
`1q and KrX; θs{pXr

´1q.

Since p´1q
s cannot be simultaneously a square and a nonsquare, we conclude that selfdual skew cyclic

codes cannot exist in this case. On the contrary, when k is odd, the factor KrX; θs{pXr
` 1q does not

show up and we are left to the condition corresponding to yl “ 1.

Finally, the fact that if p´1q
s is a square in F if and only if s is even or q ” 1 pmod 4q is a direct

application of Euler’s criterion.

3.2 Counting selfdual skew cyclic codes

We now aim at counting the number of selfdual codes sitting in Ek, when they exist. In what follows,

we then assume that the existence criterion of Corollary 3.3 is fulfilled. It follows from Theorem 2.17

that out task reduces to finding the cardinality of Wpal and Wnonpal.

3.2.1 The nonpalindromic case

We start by the nonpalindromic case, which is by far the easiest. For this counting, we will

use q-analogues of integers. We recall briefly that the q-analogue of n P N is, by definition,

rnsq :“ 1 ` q ` q2 ` ¨ ¨ ¨ ` qn´1. The q-factorial of n is defined by rnsq! “ r1sqr2sq . . . rnsq and we

set
«

n

k

ff

q

:“
rnsq!

rksq! rn ´ ksq!
“

p1 ´ qnqp1 ´ qn´1
q . . . p1 ´ qn´k`1

q

p1 ´ qqp1 ´ q2q . . . p1 ´ qkq
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where n and k are nonnegative integers with k ď n. It is a classical fact that the q-binomial coefficients

count the number of Fq-vector subspaces of dimension k in the ambient Fq-vector space Fn
q .

Therefore, with the notation of Theorem 2.17, we have

CardpWnonpalq “
ź

tl,τplquPJ

¨

˝

r
ÿ

k“0

«

r

k

ff

ql

˛

‚. (3.1)

3.2.2 The palindromic case

If V is a finite dimensional vector space equipped with a sesquilinear form, we denote by IsopV q

the number of isotropic subspaces of V of half dimension. It turns out that the behaviour of IsopV q

have been studied for a long time (see for instance [Seg59, Ple65, BBB20]) and that explicit formulas

are known. Those are called Segre’s formulas and are recalled in the following theorem.

Theorem 3.4 Let F be a finite field of odd caracteristic and cardinality qF and let σ : F Ñ F be an

involutive ring automorphism. Let V be a F -vector space of dimension 2s equipped with a nondegenerate

σ-sesquilinear form, whose Witt index is s. Then:

1. if σ “ id (Euclidean case), then IsopV q “
s´1
ś

i“0

`

qiF ` 1
˘

,

2. if σ ‰ id (Hermitian case), then IsopV q “
s´1
ś

i“0

´

q
i`1{2
F ` 1

¯

.

Proof. We recall briefly the idea of the proof as it will be useful afterwards. Let isopW q be the number of

isotropic vectors in a Euclidean or Hermitian vector space W over F . We claim that, if W has dimension

2d and Witt index d, then

1. if σ “ id (Euclidean case), then isopW q “ pqdF ´ 1qpqd´1
F ` 1q,

2. if σ ‰ id (Hermitian case), then isopW q “ pqdF ´ 1qpq
d´1{2
F ` 1q

Indeed, let us fix an isotropic basis ppuiq0ďiăs, pviq0ďiăsq corresponding to the Witt’s decomposition of

W (see Theorem 3.1) and let ppaiq0ďiăs, pbiq0ďiăsq be the coordinates in this basis of a vector. In the

Euclidean case, the fact that this vector is isotropic reduces to the equation
ř

0ďiăs aibi “ 0. Now, fixing

a nonzero vector paiq0ďiăs of Fs
l , this occurs if and only if pbiq0ďiăs lies in some hyperplane. We thus

have pqsF ´ 1qqs´1
F solutions corresponding to nonzero paiq0ďiăs, to which one should add pqsF ´ 1q more

solutions when all ai vanish. Finally, we get isopW q “ pqdF ´ 1qpqd´1
F ` 1q as claimed.

The Hermitian case is similar, expect that the equation to solve is now
ř

0ďiăs σlpaiqbi `
ř

aiσlpbiq “ 0, which reduces to
ř

0ďiăs aiσlpbiq “ α where α satisfies σlpαq “ ´α.

We conclude repeating the argument of the Euclidean case and using that there are exacly q
1{2
F values

for α.

We are now ready to prove Segre’s formula. We start by taking W1 “ V and by picking an isotropic

vector u1 in W . This corresponds to isos possibilities. Once this is achieved, we set W2 :“ pFu1q
K

{Fu1.

This is a space of dimension 2ps´1q, whose Witt index is s´1. Therefore, we can apply again our claim

and find that there are exactly isos´1 isotropic vectors in W2. We choose one of them, that we denote

by u2. Now we repeat the argument until we reach us. This corresponds to isopW1q ¨ isopW2q ¨ ¨ ¨ isopWsq
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choices. However, each of them corresponds qF ¨ q2F ¨ ¨ ¨ qs´1
F “ q

sps´1q{2
F choices of families of vecteurs of

V since ui has qi preimages in V . We conclude that the number of bases of a maximal isotropic subspace

of V is equal to q
sps´1q{2
F ¨ isopW1q ¨ isopW2q ¨ ¨ ¨ isopWsq. We finally obtain IsopV q by dividing by the

cardinality of GLspF q.

Remark 3.5 In the Euclidean case, one can alternatively prove Segre’s formula by remarking that the

orthogonal group of V acts transitively on the set of maximal isotropic subspaces and that the stabilizer

of a given maximal isotropic subspace U can be presented as a semi-direct product of GLpUq and the

group of antisymmetric linear applications from U to its dual HomF pU,F q. From this description we

find that the number of maximal isotropic subspaces is

Card
`

O2spF q
˘

q
sps´1q{2
F ¨ Card

`

GLspF q
˘

a formula from which one can eventually derive Segre’s theorem. A similar approach also works in the

Hermitian case.

Keeping the notation of Theorem 2.17, it follows from Theorem 3.4 that

CardpWpalq “
ź

lPI
yl“˘1

s´1
ź

i“0

´

qil ` 1
¯

ˆ
ź

lPI
yl‰˘1

s´1
ź

i“0

´

q
i`1{2
l ` 1

¯

. (3.2)

We notice moreover that there is always exactly one index l for which yl “ 1, and there is at most one

index l such that yl “ ´1 (such an index actually exists if and only if k is even). In both cases, the

corresponding field Fl is F, and so ql “ q.

Now combining Equations (3.1) and (3.2), we get the number of selfdual skew cyclic codes sitting in

Ek, which proves Theorem 1.2.

Example 3.6 For K “ Fq2s and θ : x ÞÑ xq, the number of selfdual skew cyclic codes is equivalent

to q
sps´1q

2 as s grows to infinity, whereas the number of skew cyclic codes (number of s dimensional

Fq-vector subspaces of Fq2s) is equivalent to qs
2

as s grows to infinity.

For example, for K “ F36 and θ : x ÞÑ x3, the number of selfdual skew cyclic codes in

E1 “ KrX; θs{pX6
´ 1q is 80 among 33880 skew cyclic codes, whereas for K “ F318 and θ : x ÞÑ x3,

the number of selfdual skew cyclic codes in E1 “ KrX; θs{pX18
´ 1q is 469740602936729600 among

791614563787525746761491781638123230424 skew cyclic codes.

Remark 3.7 We recover also the number of selfdual cyclic codes from the case r “ 1 in Segre’s formula.

We observe that, as we are in the separable case, pX ´ 1q is always a palindromic factor of pXk
´ 1q of

multiplicity 1. Thus, there exist no selfdual cyclic codes at all in the separable case in FprXs{pXk
´ 1q.

With regard to this fact, skew cyclic codes enjoy much more dual symmetries than cyclic codes. Never-

theless, the ratio of the number of skew cyclic codes over selfdual skew cyclic codes increases as fast as

Opq
s2`s

2 q as s grows larger. The best ratio is obtained for s “ 1, and q “ 3, in odd characteristic. In

this case, half of the skew cyclic codes are selfdual skew cyclic codes.
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3.3 Random generation of selfdual skew cyclic codes

Since the number of selfdual skew cyclic codes grows exponentially fast with respect to the dimen-

sion r, an algorithm outputting in one shot the complete list of these codes would be necessarily very

unefficient (the better we can expect is exponential complexity) and hence, probably not quite useful.

Instead, in what follows, we address a different question, which is that of random generation: we aim at

finding a fast algorithm that outputs a unique code in this huge list with the guarantee that the returned

code is uniformly distributed among all of them. Such an algorithm could be very useful to generate

typical selfdual skew cyclic codes and to check their properties.

3.3.1 From skew cyclic codes to finite geometry: explicit methods

Before designing our algorithms, we need to explain how we represent the objects on the computer.

We recall that a skew cyclic code is, by definition, a left ideal of Ek “ KrX; θs{pXkr
´ 1q. Hence

it necessarily has the form Ekf for some f P KrX; θs. We can further normalize this generator by

requiring that it is monic and has minimal degree; normalizing a generator amounts to replacing f by

rgcdpf,Xkr
´1q (where rgcd denotes the right gcd). The same discussion applies similarly to all quotients

of a Ore polynomial ring by a two-sided ideal and so, in particular, to KrX; θs{PlpY q and the algebras

Ẽ
plq
k “ KlrX; θs{pXr

´ ylq.

We recall further that we have the following sequence of isomorphisms:

Ek »

n
ź

l“1

KrX; θs{PlpY q »

n
ź

l“1

Ẽ
plq
k »

n
ź

l“1

EndFlpKlq

and that the left ideals of EndFlpKlq are in one-to-one correspondence with the Fl-linear subspaces of

Kl (see Subsection 2.4). We aim at making explicit all these identifications.

Going back and forth between Ek and
śn

l“1 Ẽk is not difficult. Indeed, if a code sitting in Ek is

generated by f , its image in Ek will be generated by f as well. Conversely, if one starts with a family of

codes
`

Ẽ
plq
k fl

˘

1ďlďn
, its preimage in Ek is the code generated by a Ore polynomial f satisfying the set

of congruences

f ” fl pmod PlpY qq p1 ď l ď nq. (3.3)

We need to be careful however that fl has a priori coefficients in Kl; in order to view it as a Ore polyno-

mial in KrX; θs, we have to replace each occurrence of yl by Y “ Xr. The system of congruences (3.3)

can then be solved using the Chinese Remainder Theorem; we underline that noncommutativity is not

an issue here because all the moduli PlpY q lie in the center. We also stress that the solution f to (3.3)

is in general not normalized, even if the fl are; if one wants to normalize it, one needs to compute an

additional rgcd.

We now explain how to navigate between Ẽ
plq
k and EndFlpKlq. We first recall that the isomorphism

between those two rings is given by X ÞÑ xiθ. Hence the ideal of EndFlpKlq that corresponds to the

ideal Ẽplq
k f of Ẽplq

k is the ideal consisting on linear maps vanishing on the kernel of fpxiθq. The associated

Fl-linear subspace of Kl is then just ker fpxlθq. The correspondence in the other direction is also given

Page 16



Selfdual skew cyclic codes

by an explicit formula: if V is a Fl-subvector space of Kl and pv1, . . . , vdq is a basis of V , a generator of

the ideal of Ẽplq
k corresponding to V is

llcm
ˆ

X ´
xlθpv1q

v1
, . . . , X ´

xlθpvdq

vd

˙

where llcm denotes the left lcm.

To conclude, we record the following proposition which elucidates how duality acts on our represen-

tations.

Proposition 3.8 We set E “ E1
“ Ek and P “ Y k

´ 1 (resp. E “ E
plq
k , E1

“ E
pτplqq

k and P “ Pl).

(a) Given f, g P KrX; θs, the ideal Ef and E1g are orthogonal if and only if fg˚
“ 0 in E.

(b) Given f P KrX, θs dividing P , the orthogonal of Ef is the ideal E1g˚ where g is defined by fg “ P .

Proof. (a) By nondegeneracy of sesquilinear form x´,´y, the condition fg˚
“ 0 is equivalent to gf˚

“ 0

and then to xE, gf˚
y “ 0. By adjunction relation, the condition becomes xEf, gy “ 0. Since the

adjunction is an isomorphism, the condition is further equivalent to xpE1
q

˚Ef, gy “ 0 and finally to

xEf,E1gy “ 0.

(b) By what precedes, the ideals Ef and E1g˚ are orthogonal. We conclude by noticing that

dimEf ` dimE1g˚
“ pdegP ´ deg fq ` pdegP ´ deg gq “ degP .

Remark 3.9 As a corollary, Proposition 3.8 provides a simple criterion to check that the code Ekf is

selfdual: assuming that f is normalized, it is the case if and only if ff˚
“ 0 in Ek and deg f “ s.

Algorithm 1: Explicit bijection with Wnonpal ˆ Wpal

Input: a family
`

pVlqlPI , pVlqtl,τplquPJ

˘

P Wnonpal ˆ Wpal

Output: the normalized generator of the corresponding selfdual skew cyclic code
1: for l P I :

2: pick a basis pv1, . . . , vsq of Vl

3: fl Ð llcm
`

X ´ xlθpviq{vi, 1 ď i ď s
˘

4: do the subtitution yl Ñ Xr in fl /* now fl P KrX; θs */
5: fl Ð rgcdpfl, PlpY qq

6: for tl, τplqu P J :
7: pick a basis pv1, . . . , vdq of Vl

8: fl Ð llcm
`

X ´ xlθpviq{vi, 1 ď i ď d
˘

9: do the subtitution yl Ñ Xr in fl /* now fl P KrX; θs */
10: fl Ð rgcdpfl, PlpY qq

11: define fτplq by the equality flf
˚
τplq “ PlpY q

12: fτplq Ð rgcdpfτplq, PτplqpY qq

13: compute f such that f ” fl pmod PlpY qq for 1 ď l ď n
14: return rgcdpf,Xrk ´ 1q

The discussion of this subsection is summarized by Algorithm 1 which computes the normalized

generator of the code sitting in Ek that corresponds to some element of Wnonpal ˆ Wpal via the bijection

of Theorem 2.17. The next subsections are devoted to explain how to produce a random element in

(each component of) Wnonpal ˆ Wpal.
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3.3.2 The nonpalindromic case

We first consider the indices l such that τplq ‰ l. At those places, we simply need to generate

a uniformly distributed random Fl-subspace of Kl. We proceed as follows. We first construct the

dimension: we sample an integer d P t0, . . . , ru with distribution given by:

Probrd “ is proportionnal to

«

r

i

ff

ql

.

Once this is achieved, we sample d random elements in Kl with uniform distribution. If they are linearly

independant over Fl, we output the vector space they generate. Otherwise, we throw them and start

again with d new elements. The probability of failure is

ˆ

1 ´
1

qrl

˙ˆ

1 ´
1

qr´1
l

˙

¨ ¨ ¨

˜

1 ´
1

qr´d`1
l

¸

ě 1 ´

˜

1

qrl
` ¨ ¨ ¨ `

1

qr´d`1
l

¸

ě 1 ´
1

ql ´ 1
,

proving that, in average, we will need to repeat our process only Op1q times.

Up to a multiplicative constant, the mean complexity of the algorithm is then equal to the complexity

of checking linearly independence of d vectors in a space of dimension r, which is within Opr3q by Gaussian

elimination.

3.3.3 The Hermitian case

We now move to the Hermitian case, i.e. we assume that τplq “ l and yl ‰ ˘1. We thus want to design

an algorithm outputting a uniformly distributed random isotropic Fl-subspace of Kl (endowed with the

Hermitian pairing p´,´qKl defined in (2.3), assuming that the existence criterion of Corollary 3.3 is

fulfilled. Our construction is inspired by the proof of Theorem 3.4, except that we will not work with

the quotient pFu1q
K

{pFu1q but, instead, will embed u1 is a hyperbolic plane H1 and work with HK
1 .

We consider a finite field F of cardinality qF equipped with a nontrivial involutive automorphism

σ : F Ñ F . We also consider an Hermitian space V of dimension r and denote by x´,´y the bilinear

form on it. We assume that V has Witt index s (i.e. that V is isomorphic to the orthogonal direct sum

of s hyperbolic planes) and aim at sampling a random isotropic subspace of V of dimension s.

For u, v P V , we consider the following equation in λ:

pEu,vq : xu ` λv, u ` λvy “ 0.

We briefly recall its resolution. If xv, vy “ 0, the equation reduces to TraceF {Fσ pλ ¨ xv, uyq “ ´xu, uy

which, per surjectivity of the trace, can be solved as soon as xv, uy ‰ 0.

On the contrary, when xv, vy ‰ 0, we consider the discriminant of pEu,vq defined by

∆ :“ xu, vy ¨ xv, uy ´ xu, uy ¨ xv, vy. One readily checks that ∆ is invariant under σ and that the equation

pEu,vq can be rewritten NormF {Fσ pxu, vy ` λ ¨ xv, vyq “ ∆. The solutions of pEu,vq are then the elements

of the form

λ “
δ ´ xu, vy

xv, vy
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where δ is a preimage of ∆ by the norm map. Since the latter is surjective (because we are working over

finite fields), a solution always exists.

We are now ready to present Algorithm 2: it computes a basis pu1, . . . , us, v1, . . . , vsq of V such that

each pair pui, viq is hyperbolic and, writing Hi Ă V for the hyperbolic plane they generate, we have the

orthogonal decomposition V “
Às

i“1 Hi.

Algorithm 2: Decomposition as a direct sum of hyperbolic planes (Hermitian case)
Input: V : the ambient Hermitian vector space
Output: u,v: a basis of hyperbolic pairs
1: u,v,W Ð r s, r s, 0
2: while W ‰ V :

3: pick two random vectors u and v in WK

4: if pu, vq are linearly independent and xv, vy ‰ 0 :
5: λ Ð a random solution of the equation pEu,vq

6: u Ð u ` λv /* now xu, uy “ 0 */
7: if xu, vy ‰ 0 :

8: λ Ð a solution of the equation pEv,uq

9: v Ð v ` λu /* now xv, vy “ 0 */
10: v Ð v{xv, uy /* now pu, vq is a hyperbolic pair */
11: u Ð u ` rus, v Ð v ` rvs

12: W Ð W ` Fu ` Fv
13: return u,v

Proposition 3.10 Algorithm 2 is correct.

Proof. It follows from the construction that, after the first successful iteration of the loop, pu, vq is a

hyperbolic pair in V . Indeed, we notice that the subspace H1 generated by u and v does not change

throughout the loop, and so it is still a plane at the end. Moreover, each update successively ensures

that xu, uy “ 0, then xv, vy “ 0 and finally xu, vy “ 1. We observe that xv, uy does not vanish on line 10

because the substitution of line 9 leaves it unchanged. After this, we update W so that we continue to

work in the orthogonal complement of H1 which have dimension 2ps´1q and Witt index s´1 thanks to

Witt’s cancellation theorem. The induction then goes.

Lemma 3.11 The tests of lines 4 and 7 are successful if and only if the vectors u, v picked on line 3

span a hyperbolic plane of WK and v is not isotropic.

Moreover, this happens with probability at least
?
qF ´1

?
qF `1

ě 1
2
.

Proof. It is clear that if u and v pass all tests, then they span a hyperbolic plane and that v is nonisotropic.

Conversely, we need to prove if H Ă WK is a hyperbolic plane and u, v are vectors of H with xv, vy ‰ 0,

then all tests pass. It is obvious for the test of line 4. If, on line 7, we have xu, vy “ 0, then u would

be orthogonal to both u and v, implying that the hermitian form would be degenerated on H. This is a

contradiction.

We now count to number of hyperbolic planes in WK. For this, we write dimF WK
“ 2d and we
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consider the map

S :
!

pair of noncollinear
isotropic vectors in WK

)

ÝÑ
␣

hyperbolic planes Ă WK
(

px, yq ÞÑ Fx ` Fy.

By the argument of the proof of Theorem 3.4, the fibers of S have all cardinality

p1 `
?
qF qpqF ´ 1q

`

p1 `
?
qF qpqF ´ 1q ´ pqF ´ 1q

˘

“ pqF ´ 1q
2

¨ pqF `
?
qF q.

Similarly, the domain of S has cardinality pqdF ´ 1qpq
d´1{2
F ` 1q

`

pqdF ´ 1qpq
d´1{2
F ` 1q ´ pqF ´ 1q

˘

. Hence,

the number of hyperbolic planes is

A “
pqdF ´ 1qpq

d´1{2
F ` 1q

`

pqdF ´ 1qpq
d´1{2
F ` 1q ´ pqF ´ 1q

˘

pqF ´ 1q2 ¨ pqF `
?
qF q

.

Now, once a hyperbolic place H is fixed, the number of possibilities for v is

B “ pq2F ´ 1q ´ p1 `
?
qF qpqF ´ 1q “ pqF ´ 1qpqF ´

?
qF q

while the number of options for u is C “ q2F ´ qF . Finally, the probability we are looking for is ABC

q4d
F

and

calculus shows that it is always greater than
?
qF ´1

?
qF `1

(which is the limit when d goes to infinity). The

fact that the latter is bounded from below by 1
2

follows from the observation that qF is necessarily at

least 9 because F has odd characteristic and admits a subfield of index 2.

Proposition 3.12 Algorithm 2 terminates almost surely and its average complexity is Opr3q operations

in Fσ.

Proof. Termination follows directly for Lemma 3.11. Regarding complexity, we claim that each successful

iteration of the loop costs at most Opr2q operations in Fσ. To achieve this, we first observe that solving

the equation pEu,vq amounts to finding a uniformly distrbuted preimage of the discriminant by the norm

map; this can be done using the algorithms of [CL17] for a constant cost. Similarly solving pEv,uq reduces

to a linear system, which can be attacked by simple linear algebra over Fσ for a constant cost again.

Regarding the computation of W , we may process as follows: we maintain a matrix M in reduced row

echelon form representing the subspace of V ‹
“ HomF pV, F q generated by the forms x´, wy with w P W .

At each update of W on line 11, we need to add two new lines to M and re-echelon it; this has a cost

of Opr2q operations in F using standard Gaussian elimination. Moreover, knowing M , sampling u and

v on line 3 amounts to finding two random solutions of the linear system MX “ 0. Since M is already

row-echeloned, this can be done for a cost of Opr2q operations in F as well.

Finally, the link between Algorithm 2 and the question we are interested in is established in the next

proposition.

Proposition 3.13 If u,v is the output of Algorithm 2, then the space generated by u is a uniformly

distributed random isotropic subspace of V of dimension s.
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Proof. The fact that the span of u is an isotropic subspace of dimension s is clear. To prove that it is

uniformly distributed, we notice that, after line 3, the plane H :“ Fu`Fv is uniformly distributed among

all planes in WK. Since this plane stays unchained throughout the loop, the first part of Lemma 3.11

implies that, at the end of the loop, H is uniformly distributed among all hyperbolic planes in WK.

We now fix a hyperbolic plane H Ă WK, together with a nonisotropic vector v P H. We claim that,

when u varies in H, the vector u one obtains after the replacement of line 6 is uniformly distributed

in the set IH of isotropic vectors in H. In order to prove this, for u P H, we define Lpuq Ă H as the

affine line passing through u and directed by v. We also set Spuq :“ Lpuq X IH . Clearly, for any fixed u

noncollinear to v, the Lpαuq form a partition of HzFv when α varies in Fˆ. Since v is itself nonisotropic,

we conclude that

IH “
ğ

αPFˆ

Spαuq. (3.4)

Moreover, the multiplication by α defines a bijection Spuq Ñ Spαuq; hence, all the Spαuq have the same

cardinality. Coming back now to the algorithm, we notice that the effect of lines 5 and 6 is to replace u

by a uniformly distributed random vector in Spuq. The decomposition (3.4), combined with the fact that

all Spαuq have the same cardinality, then implies that the vector u obtained after line 6 gets uniformly

distributed in IH when u varies on any given line of H that does not contain v. Since this holds for any

line, our claim is proved.

Let A be the set of all
`

pH1, u1q, . . . , pHs, usq
˘

such that the Hi are pairwise orthogonal hyper-

bolic planes in V and, for all i, ui is an isotropic vector in Hi. It follows for what precedes that, if

u “ pu1, . . . , vsq, v “ pv1, . . . , vsq is the output of Algorithm 2, the tuple
`

pH1, u1q, . . . , pHs, usq
˘

with

Hi :“ Fui `Fvi is uniformly distributed in A. To conclude, it is then enough to prove that all the fibers

of the map

A ÝÑ B :“
!

s-dimensional isotropic
subspaces of V

)

`

pH1, u1q, . . . , pHs, usq
˘

ÞÑ Fu1 ` ¨ ¨ ¨ ` Fus

have the same cardinality. For this, we use the fact that the unitary group UpV q acts transitively of B. In

other words, given two s-dimensional isotropic subspaces U,U 1
Ă V , there exists a unitary transformation

f : V Ñ V such that fpUq “ U 1. Such an f induces a bijection between the fibers above U and U 1, then

proving that the cardinalities are equal.

3.3.4 The Euclidean case

We move to the Euclidean case, i.e. we consider the same setting as before expect that we now

assume that σ is the identity. The equation pEu,vq continues to make sense but its resolution is a bit

different. Precisely, expanding the scalar product, we find that it is equivalent to

xu, uy ` 2λ ¨ xu, vy ` λ2
¨ xv, vy “ 0.

If xv, vy “ 0, it is a linear equation that we can solve as soon as xu, vy ‰ 0. On the contrary, if xv, vy ‰ 0,

it is a quadratic equation whose (reduced) discriminant is ∆ :“ xu, vy
2

´ xu, uy ¨ xv, vy (this is in fact
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the same as before!). The equation pEu,vq has no solution when ∆ is not a square and it has one or two

solutions otherwise: if δ2 “ ∆, they are given by λ “
δ´xu,vy

xv,vy
.

From here, we can write down Algorithm 3 (which is a direct translation of Algorithm 2).

Algorithm 3: Direct sum decomposition of hyperbolic planes in the Euclidean case
Input: V : the ambient Euclidean vector space
Output: u,v: a basis of hyperbolic pairs
1: u,v,W Ð r s, r s, 0
2: while W ‰ V :

3: pick two random vectors u and v in WK

4: if pu, vq are linearly independent and xv, vy ‰ 0 :
5: ∆ Ð xu, vy2 ´ xu, uy ¨ xv, vy

6: if ∆ is a square in F :
7: λ Ð a random solution of the equation pEu,vq

8: u Ð u ` λv /* now xu, uy “ 0 */
9: if xu, vy ‰ 0 :

10: λ Ð a solution of the equation pEv,uq

11: v Ð v ` λu /* now xv, vy “ 0 */
12: v Ð v{xv, uy /* now pu, vq is a hyperbolic pair */
13: u Ð u ` rus, v Ð v ` rvs

14: W Ð W ` Fu ` Fv
15: return u,v

Proposition 3.14 Algorithm 3 is correct. It terminates almost surely and its average complexity is

Opr3q operations in F . Moreover, if u,v is the output of Algorithm 3, then the space generated by u is

a uniformly distributed random isotropic subspace of V of dimension s.

Proof. It is a repetition of the proofs of Propositions 3.10, 3.12 and 3.13 (with the small difference that

the probability of success in the analogue of Lemma 3.11 is now bounded from below by qF ´1
2qF

ě 1
3
).

3.4 Enumeration of selfdual skew cyclic codes

We finally address the question of enumeration. As we already said earlier, an algorithm that outputs

in one shot the complete list of selfdual codes in Ek would only have a limited interest because the number

of such codes grows exponentially with respect to r.

Instead, we will work with iterators, that are, roughly speaking, procedures that produce a new

item each time they are called, without precomputing the entire list at the beginning. Concretely, we

model iterators by importing the keywords yield and next from the Python syntax. When a procedure

containing the keyword yield is called, it is not executed but instead returns an object called iterator,

which can be understood as a pointer to the current state of execution of the procedure. Now, each

time the iterator is called through the keyword next, the execution of the procedure continues until a

statement yield is encoutered; at that point, the execution is interrupted and the iterator outputs the

attribute of the yield instruction.

In all what follows, we assume1 that we have at our disposal, for all integers m ď n and any finite

1Such an iterator is available in many softwares, including SageMath. It is moreover easy to construct: we
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field F , an iterator producing the list of all matrices in reduced row echelon form with m rows and n

columns. We note that such matrices are in one-to-one correspondence with m-dimensional F -linear

subspaces of Fn (the subspace being the span of the rows of the matrix). In a similar fashion, we also

assume that, for any given linear system, we have at our disposal an iterator running over its solutions.

We now explain how to build iterators over each component of the product Wnonpal ˆ Wpal.

3.4.1 The nonpalindromic case

In this case, we have to construct an iterator running over all Fl-linear subspaces of Kl. In order to

reduce this task to a matrix enumeration, we first pick a basis of Kl over Fl (this can be done easily; for

example, a basis of K over F does the job). Once this is achieved, we take an iterator that runs over all

matrices over Fl in reduced row echelon form with r columns, which directly solves our problem.

3.4.2 The Euclidean case

As in Subsection 3.3.4, we work with a general r-dimensional Euclidean space V over a finite field

F of cardinality qF and assume that V has Witt index s. By the results of Subsection 3.3.4, we can

further assume that we are given a hyperbolic basis of V , that is a basis pu1, . . . , us, v1, . . . , vsq such that

xui, viy “ 1 and all other scalar products between elements in the basis vanish.

In order to take advantage of this basis, we will enumerate the s-dimensional subvector spaces of V

in a slightly different manner. Those spaces are parametrized by the matrices M in reduced row echelon

form of size s ˆ p2sq, but we shall further split M and write it as a block matrix as follows:

M “

¨

˝

A B

0 C

˛

‚.

Here A, B and C all have s columns and the horizontal separation is positionned is such a way that the

last line of A is not identically zero. The matrices A and C are then reduced row echelon matrices of

size d ˆ s and ps´dq ˆ s respectively (for some d). Besides, the columns of B in front of the pivots of

C all vanish. Conversely, if we choose A, B and C satisfying the above conditions, the resulting block

matrix M will be in reduced row echelon form. In other words, there is a bijection between the matrices

M , on the one hand, and the triples pA,B,Cq, on the other hand; in the sequel, we will constantly rely

on it to enumerate the M .

Remark 3.15 At the level of cardinalities, the above bijection leads to the (classical) formula

«

2s

s

ff

qF

“

s
ÿ

d“0

qd
2

F ¨

«

s

d

ff2

qF

.

The pA,B,Cq-presentation is quite interesting for our purpose because the isotropy condition trans-

iterate over the subset of I Ă t1, . . . , nu of cardinality m and, for each such I, we run over all the matrices in
reduced row echelon form with pivots at positions in I.
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lates to the equations:

ABtr
` BAtr

“ 0 (3.5)

ACtr
“ 0 (3.6)

Equation (3.6) means that the row-span of A should be orthogonal to the row-span of C for the standard

scalar product on F s. Since those two spaces have completary dimension, we conclude that RowSpanpCq

must be the orthogonal of RowSpanpAq. Given that, in addition, C must also be in reduced row

echelon form, we conclude that C is uniquely determined by A: it is the reduced row echelon basis of

RowSpanpAq
K.

Once C is known, one also knows its pivots and the shape of B is determined. Equation (3.5) then

appears as a linear equation on the entries of B, which can be easily solved using Gaussian elimination.

All of this leads to Algorithm 4.

Algorithm 4: Iterator over maximal isotropic spaces (Euclidean case)
1: A Ð iterator over reduced row echelon matrices over F with s columns
2: while A Ð nextpAq :

3: C Ð reduced row echelon basis of RowSpanpAqK

4: B Ð iterator over solutions of (3.5) with vanishing columns in front of pivots of C
5: while B Ð nextpBq :

6: yield
ˆ

A B
0 C

˙

Regarding complexity, it is clear that, in the worst case, an iteration of Algorithm 4 requires at most

Opr6q operations in F since it only involves Gaussian elimination in dimension at most Opr2q. However,

in most cases, an iteration only consists in going from one solution B to the next one; once a basis of

the space of solutions has been computed, this costs only Opr2q operations in F .

Remark 3.16 Denoting by d the number of rows of A, one can prove that the linear system (3.5)

consists of dpd`1q

2
linearly independent equations. Therefore, the set of admissible B is a F -vector space

of dimension dpd´1q

2
“

`

d
2

˘

; hence it has cardinality q
pd2q
F . From this, we derive that the number of isotropic

subspaces of V of dimension s is equal to

s
ÿ

d“0

q
pd2q
F

«

s

d

ff

qF

.

Comparing with Segre’s formula (see Theorem 3.4), we find the identity

s´1
ź

d“0

p1 ` qdF q “

s
ÿ

d“0

q
pd2q
F

«

s

d

ff

qF

which is actually a special case of the well-known polynomial identity [PA71]:

n´1
ź

k“0

p1 ` qktq “

n
ÿ

k“0

qpk2q

«

n

k

ff

q

tk. (3.7)
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As a byproduct, our approach then provides a bijective proof of this identity when t “ 1 and q is a power

of a prime number.

3.4.3 The Hermitian case

We now equip F with a nontrivial involution σ : F Ñ F and assume that the pairing x´,´y on V

is σ-sesquilinear. In this new situation, all the discussion of Subsection 3.4.2 applies, except that the

Equations (3.5) and (3.6) have to be replaced by the following ones:

AσpBtr
q ` BσpAtr

q “ 0 (3.8)

AσpCtr
q “ 0 (3.9)

As in the Euclidean case, it turns out that Equation (3.9) fully determines C; precisely C is the reduced

row echelon basis of RowSpanpσpAqq
K. Similarly, Equation (3.8) provides a linear system on the entries

on B but we need to careful that it is Fσ-linearity and not F -linearity as before. Anyway, the system

can equally be solved using Gaussian elimination.

Taking these remarks into account, we end up with Algorithm 5

Algorithm 5: Iterator over maximal isotropic spaces (Hermitian case)
1: A Ð iterator over reduced row echelon matrices over F with s columns
2: while A Ð nextpAq :

3: C Ð reduced row echelon basis of RowSpanpσpAqqK

4: B Ð iterator over solutions of (3.8) with vanishing columns in front of pivots of C
5: while B Ð nextpBq :

6: yield
ˆ

A B
0 C

˙

Remark 3.17 Similarly to the Euclidean case, our approach gives a bijective proof of the numerical

identity
s´1
ź

d“0

p1 ` q
d`1{2
F q “

s
ÿ

d“0

q
d2{2
F

«

s

d

ff

qF

which is Equation (3.7) evaluated at q “ qF and t “
?
q.

3.5 An implementation in SageMath

We implemented the algorithms of this section in SageMath. Our package is available at

https://plmlab.math.cnrs.fr/caruso/selfdual-skew-cyclic-codes

It consists in a main class instantiated with the extension K{F of order r and a palindromic poly-

nomial of the center P pXr
q in FpX˘r

q of KrX˘1; θs as constructor parameters. It provides an iterator

on all selfdual codes for the Ore algebra KrX˘1; θs{P pXr
q. Hereunder, we present a bunch of examples

covering all the encoutered situations : palindromic Euclidean and palindromic Hermitian.

We start by loading our package and defining the relevant base rings.
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1sage: load("selforthogonal_codes.sage")

2None

3sage: q = s = 3; F = GF(q); Fy.<y> = F[]

4sage: Q = F[’z’]. irreducible_element (2*s, "adleman -lenstra")

5sage: Q

6z^6 + z^5 + z^4 + z^3 + z^2 + z + 1

Case 3.18 Palindromic Euclidean: q “ 3, s “ 3 and P pY q “ Y ´ 1

7sage: A = SelfDualCodes(y - 1, Q)

8sage: iter = A.enumerate_selfdual_codes ()

9sage: next(iter)

10x^3 + (z^5 + 2*z^4 + z^3 + 2*z^2)*x^2 + (2*z^4 + 2*z^3 + 1)*x + z^4 + z

^3 + 2*z^2 + 2*z + 1

11sage: next(iter)

12x^3 + (2*z^4 + 2*z^2 + z + 2)*x^2 + (z^5 + z^4 + z^3 + 2*z^2 + z + 2)*x

+ z^3 + z^2 + z + 2

Case 3.19 Palindromic Hermitian case: q “ 3, s “ 3 and P pY q “ Y 2
` 1

13sage: A = SelfDualCodes(y^2 + 1, Q)

14sage: iter = A.enumerate_selfdual_codes ()

15sage: next(iter)

16x^6 + (2*z^5 + z^4 + z^2 + 2)*x^5 + (z^5 + z^3 + 2*z^2 + 2*z + 2)*x^4 +

(z^5 + z^3)*x^3 + (z^5 + z^2 + 1)*x^2 + (z^5 + 2*z^4 + z^3 + z^2 + 2*

z + 1)*x + z^5 + z^3 + 2*z^2 + z + 2

Benchmarks for a larger set of inputs are reported on Figures 1, 2 and 3; there were run on computer

with Intel(R) Core(TM) i7-9750H CPU 2.60GHz processor x64 and 16 GB of RAM.

4 Enumeration of purely inseparable selfdual skew cyclic

codes

We now address the case where k is not coprime to the characteristic p. We aim at finding an

enumeration algorithm of selfdual skew cyclic codes in this case too. If k decomposes as k1pm with k1
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P pY q q “ 3 q “ 5 q “ 7 q “ 32

Y ´ 1 no codes. no codes. no codes. no codes.
Y 3 ´ 1 inseparable no codes. no codes. inseparable
Y 5 ´ 1 no codes. inseparable no codes. no codes.
Y 7 ´ 1 no codes. no codes. inseparable no codes.
Y 9 ´ 1 inseparable no codes. no codes. inseparable

Y ` 1 9 ms 9 ms 16 ms 21 ms

Y 2 ` 1 16 ms 6 ms 15 ms 15 ms

Y 3 ` 1 inseparable 26 ms 22 ms inseparable

Y 4 ` 1 18 ms 21 ms 35 ms 48 ms

Y 5 ` 1 62 ms inseparable 111 ms 128 ms

Y 6 ` 1 inseparable 47 ms 59 ms inseparable

Y 7 ` 1 80 ms 300 ms inseparable 250 ms

Y 8 ` 1 463 ms 87 ms 113 ms . 108 ms

Y 9 ` 1 inseparable 218 ms 125 ms inseparable

Figure 1: Timings for s “ 2

P pY q q “ 3 q “ 5 q “ 7 q “ 32

Y ´ 1 21 ms no codes. 207 ms no codes.

Y 3 ´ 1 inseparable no codes. 42 ms inseparable

Y 5 ´ 1 101 ms inseparable 129 ms no codes.

Y 7 ´ 1 195 ms no codes. inseparable no codes.

Y 9 ´ 1 inseparable no codes. 342 ms inseparable

Y ` 1 no codes. 21 ms no codes. 56 ms

Y 2 ` 1 152 ms 12 ms 36 ms 32 ms

Y 3 ` 1 inseparable 57 ms no codes. inseparable

Y 4 ` 1 38 ms 47 ms 74 ms 141 ms

Y 5 ` 1 no codes. inseparable no codes. 317 ms

Y 6 ` 1 inseparable 101 ms 139 ms inseparable

Y 7 ` 1 no codes. 398 ms inseparable 601 ms .

Y 8 ` 1 209 ms 270 ms 270 ms 280 ms

Y 9 ` 1 inseparable 450 ms no codes. inseparable

Figure 2: Timings for s “ 3
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P pY q q “ 3 q “ 5 q “ 7 q “ 32

Y ´ 1 no codes. no codes. no codes. no codes.
Y 3 ´ 1 inseparable no codes. no codes. inseparable
Y 5 ´ 1 no codes. inseparable no codes. no codes.
Y 7 ´ 1 no codes. no codes. inseparable no codes.
Y 9 ´ 1 inseparable no codes. no codes. inseparable

Y ` 1 59 ms 49 ms 58 ms 177 ms

Y 2 ` 1 78 ms 29 ms 89 ms 69 ms

Y 3 ` 1 inseparable 128 ms 90 ms inseparable

Y 4 ` 1 88 ms 108 ms 174 ms 412 ms

Y 5 ` 1 220 ms inseparable 336 ms 723 ms

Y 6 ` 1 inseparable 200 ms 388 ms inseparable

Y 7 ` 1 286 ms 387 ms inseparable 1367 ms

Y 8 ` 1 406 ms . 551 ms 586 ms 2159 ms

Y 9 ` 1 inseparable 691 ms 784 ms inseparable

Figure 3: Timings for s “ 4

coprime with p, it follows easily from the chinese remainder isomorphism

Ek » KrY,X; θs{pY k1

´ 1, Xrpm
´ Y q

» pKrY,X; θs{pY k1

´ 1qq{pXr
´ Y

1
pm q

pm

»

˜

KrY,X; θs{
ź

1ďlďn

PlpY q

¸

{pXr
´ Y

1
pm q

pm

»
ź

1ďlďn

pKrY,X; θs{PlpY qq {pXr
´ Y

1
pm q

pm

that we can recover an enumeration algorithm for any k by combining the separable case and the case

where k “ pm (purely inseparable case).

4.1 Enumeration of purely inseparable selfdual skew cyclic codes

In order to solve the purely inseparable case, we follow a factorization approach, inspired by but

slightly different from that of article [BU14]. We introduce twisted skew separable codes E
pξXtq

k,l , that

are slight generalizations of previously considered skew separable codes. They are defined as skew

separable codes of Eplq
k corresponding to the usual adjunction on E

plq
k composed with the conjugation by

ξXt for ξ P Kl and t P t0, su. We will then obtain all inseparable selfdual codes as products of twisted

skew separable selfdual codes.

Definition 4.1 We fix parameters t P t0, su, ξ P Kl. We denote by E
pξXtq

k,l , the space E
plq
k equipped

with the ξXt-twisted bilinear form pκ, ρq “ TraceKl{Fl
pζ.ξκθtpσlpρqqq.
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The corresponding adjunction is f
‚
Xtξ´1 “ Xtξ´1ζ´1 ř

i X
´iσlpfiqζξX

´t; we have

pκ, fpρqq
pξXtq

Fl
“ pf

‚
Xtξ´1 pκq, ρq

pξXtq

Fl
.

In the sequel, we will take σlpξq “ ξ, and if t “ s θtpξq “ ´ξ, so that the ξXt-twisted bilinear form

enjoys following symmetries:

• it is Euclidean if yl “ ˘1 and t “ 0,

• it is Hermitian if yl ‰ ˘1 and t “ 0,

• it is skew-Euclidean if yl “ ˘1 and t “ s,

• it is skew-Hermitian if yl ‰ ˘1 and t “ s.

Remark 4.2 Reusing the method of Remark 3.5, we can compute the number of twisted codes when

k “ 1. For example, in the skew-Euclidean case, it is given by

Card
`

Sp2spFlq
˘

q
sps`1q{2
l ¨ Card

`

GLspFlq
˘

“

s
ź

d“1

p1 ` qdl q

where Sp2s stands for the symplectic group. We refer to [Han05] for more details.

Lemma 4.3 The set of ξ-twisted selfdual skew cyclic codes is in bijection with the set of nontwisted

selfdual skew cyclic codes and their intersection is empty if θspξq ‰ ξ.

Proof. We have for any monic skew polynomial f of degree s generating a selfdual code Cf of Eplq
k :

fξf
‚
ξ´1 ξ´1

“
ff‚

XspXr ´ 1q
Xs

pXr
´ 1q “ fp0qXs

pXr
´ 1q

where fp0q denotes the constant term in f . As we assume ξ to be σl-invariant, by Hilbert-90, we can

solve the equation γσlpγq “ ξ for γ in Kl
θs . Noting then g “ σlpγqfγ´1, we get a bijection f ÞÑ g

between nontwisted and ξ-twisted selfdual skew cyclic codes:

gg‚ξ “ σlpγqff‚ 1

σlpγq
“ fp0qXs

pXr
´ 1q

Moreover, if we assume θspξq ‰ ξ and ff‚
“ ff‚ξ “ fξ´1f‚ξ “ 0 in E

plq
k , then by evaluating lifts at 0,

we get fp0q “ fp0q
θspξq

ξ
, and so fp0q “ 0 and thus f “ 0, which contradicts the hypothesis.

Algorithm 6 is an iterator that enumerates selfdual skew cyclic codes sitting in Ek. It is exhaustive,

in the sense that it lists every selfdual code at least once, but it is slightly redundant.

Theorem 4.4 Algorithm 6 is correct and exhaustive

Proof. In order to enumerate all inseparable selfdual skew cyclic codes, at the cost of some redundancy, we

can assume without loss of generality (See the last part of the proof, hereunder) that the general solution

is a product of twisted selfdual skew cyclic codes f1 . . . fn, where the fi are left monic. We start by solving

the equation fnf
‚
n ” 0 mod pXr

´ 1q. This has been done in the preceding section. Now we obtain a
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Algorithm 6: Enumeration of purely inseparable selfdual skew cyclic codes
1: C Ð array of length pm of maps of iterators on all twisted codes indexed by all possible

twists ξXsp
degpfq

s %2q where ξ can be choosen among all representatives of Pr
Fl

in Kl if degpfq

s
is even and otherwise among all representatives of Pr

Fl
in Kl that are antisymmetric

relatively to θs.
2: procedure RunThroughRemainingCodes(f)
3: i Ð

degpfq

s
4: if i “ pm :

5: yield f
6: else :

7: while fi Ð nextpCrisrfp0qXspi%2qsq :
8: RunThroughRemainingCodes(fif)

9: RunThroughRemainingCodes(1)

scalar κn “
fnf‚

n
XspXr´1q

which is equal to fnp0q. Let ‚κn be defined by f
‚κn
i “ σlpκnqf‚

i κn
´1. The equation

becomes fn´1X
sf

‚κn
n´1 “ 0 pXr

´ 1q. Solving it, we now obtain a scalar κn´1 “
fn´1X

sf
‚κn
n´1

Xr`spXr´1q
. At the next

step, the monomials Xs cancel, and we are back in the Hermitian case: fn´2f
‚κn´1κn

n´2 “ 0 pXr
´1q. And

so on so forth, getting alternatively a skew Hermitian (resp. skew Euclidean) and a Hermitian (resp.

Euclidean) bilinear form. We have to check that the κi satisfy the required symmetry for the selfdual

skew cyclic codes to exist. A monic polynomial f satisfying the product criterion: ff‚κXt “ 0 in E
pκXtq

k,l

has a constant term fp0q satisfying:

pXs
` ¨ ¨ ¨ ` fp0qqκXt

pXrfp0q ` ¨ ¨ ¨ ` Xs
q “ θspκqθs`t

pfp0qqXsXtXr
` fp0qκXtXs

9Xr`s`t
´ Xs`t.

Thus we have:

θspfp0qq “ ´fp0q for θspκq “ κ , t “ 0 (4.1)

θspκq “ ´κ for t “ s (symplectic case) (4.2)

´fp0qκ “ θspκfp0qq for t “ 0 (4.3)

If we start with κ “ 1, we get the symplectic case from (4.1) and (4.2) with κ satisfying θspκq “ ´κ,

at the next step. We have then an orthogonal case, then again alternatively a symplectic case with κ

satisfying θspκq “ ´κ from (4.3), etc.

We now prove that the algorithm is exhaustive. We observe that the projection

E
plq
k “ KlrX

˘1; θs{pXr
´ 1q

pm
ÝÑ KlrX

˘1; θs{pXr
´ 1q “ E

plq
1

f ÞÑ f̄

preserves the selforthogonality property. Noting fpm :“ ˜̄f the unique lift of f̄ on the basis pXi
q0ďiăr,

we have a factorization fpm “ rpmgpm for a skew polynomial rpm of degree striclty less than s and a

selfdual skew cyclic code gpm in E1. Indeed any selforthogonal subspace of E
plq
1 of dimension strictly
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less than r, corresponding to a monic skew polynomial f can be extended, by Witt’s decomposition, to

a maximal isotropic space corresponding to a selfdual monic skew polynomial g of degree s. Now this

vector space inclusion corresponds by duality to a factorization f̄ “ rg for a skew polynomial r of degree

striclty less than s. Expressing pXr
´ 1q as a product of the selfdual codes gpm ,

g˚
pm

gpm

gpm p0qXs we get that

any selforthogonal skew cyclic code f P E
plq
k can be written in the form

f “ hpXr
´ 1q ` fpm “

ˆ

h
g˚
pm

gpmp0qXs
` rpm

˙

gpm

where deg h “ ppm´2qs and 1
Xsgpm p0q

g˚
pm P KlrX; θs is of degree s. Let us note f 1

“ g 1
Xsgpm p0q

g˚
pm `rpm .

We have deg f 1
“ ppm ´1qs and f 1gpmpf 1gpmq

˚
“ f 1gp0qXsf 1˚

pXr
´1q ” 0 mod pXr

´1q
pm and hence

f 1f
1‚Xsgpm p0q

” 0 mod pXr
´ 1q

pm´1. With the same reasoning, replacing f by f 1 and the adjunction

˚ by ‚Xsgpm p0q, we get yet another twisted separable selfdual skew cyclic code fpm´1 and another skew

polynomial f2 such that f2f
2‚gpm´1p0qgpm p0q

” 0 mod pXr
´1q

pm´2. In turn replacing f 1 by f2 and the

adjunction ‚Xsgpm p0q by ‚gpm´1p0qgpm p0q, we get yet another twisted separable selfdual skew cyclic code

gpm´2 and another skew polynomial f2 such that f2f
2‚Xsgpm´2p0qgpm´1p0qgpm p0q

” 0 mod pXr
´1q

pm´3.

Per induction we thus a factorization g0g1 ¨ ¨ ¨ gpm´1gpm of f into twisted separable selfdual skew cyclic

codes as claimed.

Remark 4.5 We notice the reason for the redundancy in the enumeration algorithm from the above

proof of the exhaustivity. Indeed the many different factorizations fi “ rigi for selforthogonal fi at each

step lead to as many redundant enumerations of the same inseparable selfdual skew cyclic code f .

4.2 SageMath enumeration of inseparable selfdual skew cyclic codes

For F “ GF p3q, K “ GF p36q and k “ 3, the upper bound on the number of generated inseparable

selfdual skew cyclic codes is numerically equal to 80 ˆ 1120 ˆ 80, where 80 is the number of orthogonal

isotropic spaces and 1120 the number of symplectic isotropic spaces (see Remark 4.2). A SageMath enu-

meration based on this algorithm provides a number n of maximal isotropic codes equal to n “ 2360960.

We have not many redundancies since 80ˆ 1120ˆ 80 « 3ˆ 2360960. For the purpose of this heavy com-

putation we implemented the PARI/GP optimization for finite field extensions in a dedicated branch of

our code, which is only valid for prime base fields. The computation takes place in less than 10 minutes

on the aforementioned computer.
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