
A Fast Algorithm for Computing the p-Curvature

Alin Bostan
Inria (France)

alin.bostan@inria.fr

Xavier Caruso
Université Rennes 1

xavier.caruso@normalesup.org

Éric Schost
Western University

eschost@uwo.ca

ABSTRACT
We design an algorithm for computing the p-curvature of a
differential system in positive characteristic p. For a system
of dimension r with coefficients of degree at most d, its com-
plexity is O (̃pdrω) operations in the ground field (where
ω denotes the exponent of matrix multiplication), whereas
the size of the output is about pdr2. Our algorithm is then
quasi-optimal assuming that matrix multiplication is (i.e.
ω = 2). The main theoretical input we are using is the exis-
tence of a well-suited ring of series with divided powers for
which an analogue of the Cauchy–Lipschitz Theorem holds.

Categories and Subject Descriptors:
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation – Algebraic Algorithms

Keywords: Algorithms, complexity, differential equations,
p-curvature.

1. INTRODUCTION
We study in this article algorithmic questions related to

linear differential systems in positive characteristic. Let k
be an arbitrary field of prime characteristic p, and A be
an r × r matrix with entries in the field k(x) of rational
functions over k. A simple-to-define, yet very important
object attached to the differential system Y ′ = AY is its
so-called p-curvature. It is the p-th iterate ∂pA of the map
∂A : k(x)r → k(x)r that sends v to v′ − Av. It turns out
that it is k(x)-linear. It is moreover classical that its matrix
with respect to the canonical basis of k(x)r is equal to the
term Ap of the recursive sequence (Ai)i defined by

A1 = −A and Ai+1 = A′i −A ·Ai for i ≥ 1. (1)

In all what follows, we will thus deliberately identify the
matrix Ap with the p-curvature of Y ′ = AY . The above
recurrence yields an algorithm for computing it, sometimes
referred to as Katz’s algorithm.

The p-curvature is related to solutions; it measures to
what extent the usual Cauchy–Lipschitz theorem applies in

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ISSAC’15, July 6–9, 2015, Bath, United Kingdom..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3435-8/15/07 ...$15.00.
http://dx.doi.org/10.1145/2755996.2756674.

characteristic p. More precisely, at an ordinary point, the
system Y ′ = AY admits a fundamental matrix of power
series solutions in k[[x]] if and only if the p-curvature Ap
vanishes. In this case, the system Y ′ = AY even admits a
fundamental matrix of solutions which are rational functions
in k(x). More generally, the dimension of the kernel of Ap
is equal to the dimension of the space of rational function
solutions of Y ′ = AY .

The primary importance of the notion of p-curvature re-
lies in its occurrence in one of the versions of the celebrated
Grothendieck–Katz conjecture [19, 20, 12, 30]. This con-
jecture, first formulated by Alexandre Grothendieck in the
late 1960s, is a local-global principle for linear differential
systems, which states that a linear differential system with
rational function coefficients over a function field admits a
fundamental matrix of algebraic solutions if and only if its
p-curvatures vanish for almost all primes p.

In computer algebra, p-curvature has been introduced by
van der Put [22, 23], who popularized it as a tool for fac-
toring differential operators in characteristic p. Cluzeau [13]
generalized the approach to the decomposition of differen-
tial systems over k(x). The p-curvature has also been used
by Cluzeau and van Hoeij [14] as an algorithmic filter for
computing exponential solutions of differential operators in
characteristic zero.

Computing efficiently the p-curvature is in itself a chal-
lenging problem, especially for large values of p. Our initial
motivation for studying this question emerged from concrete
applications, in lattice path combinatorics [6, 7] and in sta-
tistical physics [3]. In this article, we address the question of
the computation of Ap in good complexity, with respect to
three parameters: the dimension r of the system Y ′ = AY ,
the maximum degree d of the rational function entries of
A, and the characteristic p of the ground field. In terms of
these quantities, the arithmetical size of Ap is generically
proportional to pdr2 if r > 1.

Previous work. Cluzeau [13, Prop. 3.2] observed that
the direct algorithm based on recurrence (1) has complexity
O (̃p2drω), where ω is the matrix multiplication exponent
and the soft-O notation O (̃) hides polylogarithmic factors.
Compared to the size of the p-curvature, this cost is good
with respect to r and d, but not to p. The first subquadratic
algorithm in p, of complexity O (̃p1+ω/3), was designed in [9,
§6.3]. In some special cases, additional partial results were
obtained in [9], notably an algorithm of quasi-linear cost
O (̃p) for certain systems of order r = 2. However, the ques-
tion of designing a general algorithm for computing Ap with
quasi-linear complexity in p remained open. In a related, but

different direction, the article [4] proposed an algorithm for
computing the characteristic polynomial of the p-curvature
in time essentially linear in

√
p, without computing Ap itself.

Contribution. We prove that the p-curvature Ap can be
computed in quasi-linear time with respect to p. More pre-
cisely, our main result (Theorem 4.2) states that O

(̃
pdrω)

operations in k are sufficient for this task. This complexity
result is quasi-optimal not only with respect to the main pa-
rameter p, but also to d; with respect to the dimension r, it
is as optimal as matrix multiplication. Moreover the algo-
rithm we obtain is highly parallelizable by design. The key
tools underlying the proof of Theorem 4.2 are the notion of
divided power rings in characteristic p, and a new formula
for the p-curvature (Propositions 4.3 and 4.4) in terms of
divided power series. Crucial ingredients are the fact that
a Cauchy–Lipschitz theorem for differential systems holds
over divided power rings (Proposition 3.4) and the fact that
Newton iteration can be used to efficiently compute (trunca-
tions of) fundamental matrices of divided power solutions.

Structure of the paper. In Section 2, we recall the main
theoretical properties of the basic objects used in this article.
Section 3 is devoted to the existence and the computation
of solutions of differential systems in divided power rings.
In Section 4, we move to the main objective of the arti-
cle, the computation of the p-curvature: after relating Ap
to the framework of divided powers, we describe our main
algorithm for Ap, of complexity O (̃pdrω). We conclude in
Section 5 by describing the implementation of our algorithm
and some benchmarks.

Complexity measures. Throughout this article, we es-
timate the cost of our algorithms by counting arithmetic
operations in the base ring or field at unit cost.

We use standard complexity notations. The letter ω refers
to a feasible exponent for matrix multiplication (i.e. there
exists an algorithm for multiplying n × n matrices over a
ring A with at most O(nω) operations in A); the best known
bound is ω < 2.3729 from [15]. The soft-O notation O (̃·)
indicates that polylogarithmic factors are omitted; in par-
ticular, we will use the fact that many arithmetic operations
on univariate polynomials of degree d can be done in O (̃d)
operations: addition, multiplication, Chinese remaindering,
etc, the key to these results being fast polynomial multiplica-
tion [27, 26, 11, 18]. A general reference for these questions
is [17].

2. THEORETICAL SETTING
We introduce and briefly recall the main properties of the

theoretical objects we are going to use in this article. All
the material presented in this section is classical; a general
reference is [24].

Definitions and notations. Let A be a commutative ring
with unit. We recall that a derivation on A is an additive
map ′ : A→ A, satisfying the Leibniz rule (fg)′ = f ′g+ fg′

for all f, g ∈ A. The image f ′ of f under the derivation is
called the derivative of f . From now on, we assume that
A is equipped with a derivation. A differential system with
coefficients in A is an equation of the form Y ′ = AY where
A is a given r× r matrix with coefficients in A (for a certain
positive integer r), the unknown Y is a column vector of
length r and Y ′ denotes the vector obtained from Y by tak-
ing the derivative component-wise. The integer r is called

the dimension of the system. We recall briefly that a linear
differential equation:

ary
(r) + · · ·+ a1y

′ + a0y = 0 (with ai ∈ A) (2)

can be viewed as a particular case of a differential system.
Indeed, defining the companion matrix

C =

− a0
ar

1 − a1
ar

. . .
...

1 −ar−1

ar

 (3)

and A = tC, the solutions of the system Y ′ = AY are
exactly the vectors of the form t(y, y′, . . . , y(r−1)) where y
is a solution of (2). In this correspondence, the order of
the differential equation agrees with the dimension of the
associated differential system.

Differential modules. A differential module over A is a
pair (M,∂) where M is an A-module and ∂ : M →M is an
additive map satisfying a Leibniz-like rule, which is:

∀f ∈ A, ∀x ∈M, ∂(fx) = f ′ · x+ f · ∂(x). (4)

There exists a canonical one-to-one correspondence between
differential systems and differential modules (M,∂) for which
M = Ar for some r: to a differential system Y ′ = AY of di-
mension r, we attach the differential module (Ar, ∂A) where
∂A : Ar → Ar is the function mapping X to X ′−AX. Under
this correspondence, the solutions of Y ′ = AY are exactly
vectors in the kernel of ∂A.

To a differential equation as (2), one can associate the
differential operator L = ar∂

r + ar−1∂
r−1 + · · ·+ a1∂ + a0;

it lies in the non-commutative ring A〈∂〉, endowed with the
usual addition of polynomials and a multiplication ruled by
the relation ∂ ·f = f ·∂+f ′ for all f ∈ A (note that, as often
in the literature, we are using ∂ to denote either the struc-
ture map of a differential module, and a non-commutative
indeterminate).

Then, if ar is a unit in A, one can further associate to
L the quotient A〈∂〉/A〈∂〉L ' Ar. The differential struc-
ture inherited from A〈∂〉 makes it a differential module with
structure map X ∈ Ar 7→ X ′+CX, where C is the compan-
ion matrix defined above; in other words, this is the module
(A〈∂〉/A〈∂〉L, ∂−C), with the previous notation.

Scalar extension. Let A and B be two rings equipped
with derivations and let ϕ : A→ B be a ring homomorphism
commuting with derivation. From a given differential system
Y ′ = AY with coefficients in A, one can build a differential
system over B by applying ϕ: it is Y ′ = ϕ(A)Y , where ϕ(A)
is the matrix obtained from A by applying ϕ entry-wise.

This operation admits an analogue at the level of dif-
ferential modules: to a differential module (M,∂) over A,
we attach the differential module (MB, ∂B) over B where
MB = B⊗ϕ,A M and ∂B : MB →MB is defined by:

∀f ∈ B, ∀x ∈M, ∂B(f ⊗ x) = f ′ ⊗ x+ f ⊗ ∂(x).

It is easily seen that if (M,∂) is a differential module asso-
ciated to the system Y ′ = AY then (MB, ∂B) is that asso-
ciated to the system Y ′ = ϕ(A)Y .

The p-curvature. Let k be any field of characteristic p. We
assume here that A is the field k(x) — consisting of rational
functions over k — equipped with the standard derivation.

The p-curvature of a differential module (M,∂) over k(x) is
defined as the mapping ∂p : M → M . It follows from the
Leibniz rule (4) and the fact that the p-th derivative of any
element of k(x) vanishes that the p-curvature is k(x)-linear.

This definition extends to differential systems as follows:
the p-curvature of the system Y ′ = AY is the k(x)-linear
map ∂pA : MA → MA where (MA, ∂A) is the corresponding
differential module. One can check that the matrix of ∂pA (in
the canonical basis of MA) is the p-th term of the recursive
sequence (Ai) defined in (1).

Considering again a differential operator L and the as-
sociated differential module (A〈∂〉/A〈∂〉L, ∂−C), for the as-
sociated companion matrix C, we obtain the usual recur-
rence A1 = C and Ai+1 = A′i + C · Ai. The p-curvature of
A〈∂〉/A〈∂〉L will simply be called the p-curvature of L.

3. SERIES WITH DIVIDED POWERS
In all this section, we let ` be a ring in which p vanishes.

We recall the definition of the divided power ring over `,
and its main properties — mainly, a Cauchy–Lipschitz the-
orem that will allow us to compute solutions of differen-
tial systems. We show how some approaches that are well-
known for power series solutions carry over without signifi-
cant changes in this context. Most results in this section are
not new; those from §3.1 and §3.2 are implicitly contained
in [1, 2], while the theoretical basis of §3.3 is similar to [21].

3.1 The ring `[[t]]dp

Let `[[t]]dp be the ring of formal series of the form:

f = a0 + a1γ1(t) + a2γ2(t) + · · ·+ aiγi(t) + · · · (5)

where the ai’s are elements of ` and each γi(t) is a symbol

which should be thought of as ti

i!
. The multiplication on

`[[t]]dp is defined by the rule γi(t) · γj(t) =
(
i+j
i

)
· γi+j(t).

Remark 3.1. The ring `[[t]]dp is not the PD-envelope in
the sense of [1, 2] of `[[t]] with respect to the ideal (t) but its
completion for the topology defined by the divided powers ide-
als. Taking the completion is essential to have an analogue
of the Cauchy–Lipschitz Theorem (cf Proposition 3.4).

Invertible elements of `[[t]]dp are easily described: they are
exactly those for which the“constant”coefficient a0 is invert-
ible in `. The ring `[[t]]dp is moreover endowed with a deriva-
tion defined by f ′ =

∑∞
i=0 ai+1γi(t) for f =

∑∞
i=0 aiγi(t).

It then makes sense to consider differential systems over
`[[t]]dp. A significant difference with power series is the
existence of an integral operator: it maps f as above to∫
f =

∑∞
i=0 aiγi+1(t) and satisfies (

∫
f)′ = f for all f .

Divided power ideals. For all positive integers N , we de-
note by `[[t]]dp≥N the ideal of `[[t]]dp consisting of series of the

form
∑
i≥N aiγi(t). The quotient `[[t]]dp/`[[t]]dp≥N is a free `-

module of rank N and a basis of it is (1, γ1(t), . . . , γN−1(t)).

In particular, for N = 1, the quotient `[[t]]dp/`[[t]]dp≥1 is iso-

morphic to `: in the sequel, we shall denote by f(0) ∈ ` the

reduction of an element f ∈ `[[t]]dp modulo `[[t]]dp≥1. On the

writing (5), it is nothing but the constant coefficient a0 in
the expansion of f .

We draw the reader’s attention to the fact that `[[t]]dp≥N is

not stable under derivation, so the quotients `[[t]]dp/`[[t]]dp≥N
do not inherit a derivation.

Relationship with `[t]. There exists a natural map ε :
`[t]→ `[[t]]dp taking a polynomial

∑
i ait

i to
∑p−1
i=0 aii!·γi(t).

The latter sum stops at i = p−1 because i! becomes divisible
by p after that. Clearly, the kernel of ε is the principal ideal
generated by tp. Hence ε factors through `[t]/tp as follows:

`[t]
pr−→ `[t]/tp

ι−→ `[[t]]dp (6)

where pr is the canonical projection taking a polynomial to
its reduction modulo tp. We observe moreover that the ideal
tp`[t] is stable under derivation and, consequently, that the
quotient ring `[t]/tp inherits a derivation. Furthermore, the
two mappings in (6) commute with the derivation.

3.2 Computations with divided powers
It turns out that the γn(t)’s can all be expressed in terms

of only few of them, resulting in a more flexible description
of the ring `[[t]]dp. To make this precise, we set ti = γpi(t)
and first observe that tni = n! · γnpi(t) for all i and n; this is
proved by induction on n, using the equalities

tn+1
i = n! · γnpi(t) · γpi(t) = n! ·

((n+1)pi

pi

)
γ(n+1)pi(t),

since Lucas’ Theorem shows that
((n+1)pi

pi

)
≡ n+1 (mod p).

In particular tpi = 0 for all i.

Proposition 3.2. Let n be a positive integer and n =∑s
i=0 nip

i its writing in basis p. Then:

γn(t) = γn0(t) · γn1p(t) · · · γnsps(t) =
tn0
0

n0!
· t
n1
1

n1!
· · · t

ns
s

ns!
.

Proof. The first equality is proved by induction on s
using the fact that if n = a + bp with 0 ≤ a < p, then
γaγbp = γn, since

(
a+bp
a

)
≡ 1 (mod p). The second equality

then follows from the relations tni
i = ni! · γnipi

(t).

A corollary of the above proposition is that elements of
`[[t]]dp can be alternatively described as infinite sums of
monomials an0,...,ns · t

n0
0 · t

n1
1 · · · tns

s where the ni’s are inte-
gers in the range [0, p) and the coefficient an0,...,ns lies in `.
The product in `[[t]]dp is then the usual product of series
subject to the additional rules tpi = 0 for all i.

More precisely, restricting ourselves to some given preci-
sion of the form N = nps, we deduce from the above discus-
sion the following corollary.

Corollary 3.3. For N = nps, with s ∈ N and n ∈
{1, . . . , p}, there is a canonical isomorphism of `-algebras:

`[[t]]dp/`[[t]]dp≥N ' `[t0, . . . , ts]/(t
p
0, . . . , t

p
s−1, t

n
s).

For instance, if we take s = 0 and N = n in {1, . . . , p}, we

obtain the isomorphism `[[t]]dp/`[[t]]dp≥N ' `[t]/t
N .

In terms of complexity, the change of bases between left-
and right-hand sides can both be done in O (̃N) operations
in `: all the factorials we need can be computed once and for
all for O(min(N, p)) operations; then each monomial con-
version takes O(s) = O(log(N)) operations, for a total of
O(N log(N)) = O (̃N).

The previous corollary is useful in order to devise a mul-
tiplication algorithm for divided powers, since it reduces
this question to multivariate power series multiplication (ad-
dition takes linear time in both bases). To multiply in
`[t0, . . . , ts]/(t

p
0, . . . , t

p
s−1, t

n
s), one can use a direct algorithm:

multiply and discard unwanted terms. Using for instance

Kronecker’s substitution and FFT-based univariate arith-
metic, we find that a multiplication in `[[t]]dp at precision N

(i.e. modulo `[[t]]dp≥N) can be performed with O (̃2logp NN)

operations in k. A solution that leads to a cost N1+ε for
any ε > 0 is in [28], but the former result will be sufficient.

3.3 The Cauchy–Lipschitz Theorem
A nice feature of the ring `[[t]]dp — which does not hold

for `[[t]] notably — is the existence of an analogue of the
classical Cauchy–Lipschitz theorem. This property will have
a fundamental importance for the purpose of our paper; see
for instance [21, Proposition 4.2] for similar considerations.

Proposition 3.4. Let Y ′ = AY be a differential system
of dimension r with coefficients in `[[t]]dp. For all initial
data V ∈ `r (considered as a column vector) the following
Cauchy problem has a unique solution in `[[t]]dp:{

Y ′ = A · Y
Y (0) = V.

Proof. Let us write the expansions of A and Y :

A =

∞∑
i=0

Aiγi(t) and Y =

∞∑
i=0

Yiγi(t)

where the Ai’s and Yi’s have coefficients in `. The Cauchy
problem translates to Y0 = V and Yn+1 =

∑n
i=0

(
n
i

)
· Ai ·

Yn−i. It is now clear that it has a unique solution.

Of course, Proposition 3.4 extends readily to the case
where the initial data V is any matrix having r rows. In
particular, taking V = Ir (the identity matrix of size r), we
find that there exists a unique r × r matrix Y with coeffi-
cients in `[[t]]dp such that Y (0) = Ir and Y ′ = A · Y . This
matrix is often called a fundamental system of solutions.

Finding solutions using Newton iteration. In charac-
teristic zero, it is possible to compute power series solutions
of a differential system such as Y ′ = A · Y using Newton
iteration; an algorithm for this is presented on [5, Fig. 1].

One can use this algorithm to compute a fundamental
system of solutions in our context. For this, we first need
to introduce two notations. Given an element f ∈ `[[t]]dp

written as f =
∑
i aiγi(t) together with an integer m, we

set dfem =
∑m−1
i=0 aiγi(t). Similarly, if M is a matrix with

coefficients in `[[t]]dp, we define dMem and
∫
M by applying

the corresponding operations entry-wise.

Algorithm fundamental_solutions

Input: a differential system Y ′ = AY , an integer N
Output: the fund. system of solutions modulo `[[t]]dp≥N

1. Y = Ir + t A(0); Z = Ir; m = 2

2. while m ≤ N/2:

3. Z = Z +
⌈
Z(Ir − Y Z)

⌉m
4. Y = Y −

⌈
Y
(∫

Z · (Y ′ − dAe2m−1Y)
)⌉2m

5. m = 2m

6. return Y

Correction is proved as in the classical case [5, Lemma 1].
Let us take n ∈ {2, . . . , p} and s ∈ N such that n−1 is the

last digit of N written in basis p, and s the corresponding

exponent; then, we have (n− 1)ps ≤ N < nps. Since we are
only interested in costs up to logarithmic factors, we may
assume that we do all operations at precision nps (a better
analysis would take into account the fact that the precision
grows quadratically).

By Corollary 3.3 and the discussion that follows, arith-
metic operations in `[[t]]dp/`[[t]]dp≥nps take timeO (̃2logp NN).
This is also the case for differentiation and integration, in
view of the formulas given in the previous subsection; trun-
cation is free. The total complexity of Algorithm funda-

mental_solutions is therefore O (̃2logp NNrω) operations
in `, where r is the dimension of the differential system. If
N = pO(1), which is what we need later on, this is O (̃Nrω).

The case of differential operators. We now consider
the case of the differential system associated to a differential
operator L = ar∂

r+· · ·+a1∂+a0 ∈ `[[t]]dp〈∂〉. We will work
under the following few assumptions: we assume that ar is
invertible, and that there exists an integer d < p such that
all ai’s can be written ai = αi,0 + αi,1γ1(t) + · · ·+ αi,dγd(t)
for some coefficients αi,j in `; thus, by assumption, αr,0 is
a unit in `. Our goal is still to compute a basis of solutions
up to precision N ; the algorithm is a direct adaptation of a
classical construction to the case of divided powers.

In all that follows, we let f0, . . . , fr−1 be the solutions of L
in `[[t]]dp, such that fi is the unique solution of the Cauchy
problem (cf Proposition 3.4):

L(fi) = 0 ; f
(j)
i (0) = δij for 0 ≤ j < r (7)

where δij is the Kronecker delta. For f =
∑∞
j=0 ξjγj(t) in

`[[t]]dp, a direct computation shows that the n-th coefficient
of L(f) is

∑r
i=0

∑n
j=0

(
n
j

)
αi,jξn+i−j . Assume L(f) = 0.

Then, extracting the term in ξn+r, and using that αi,j = 0

for j > d, we get ξn+r = −1
αr,0

∑r−1
i=0

∑d
j=0

(
n
j

)
αi,jξn+i−j .

Letting m = i−j, we find ξn+r =
∑r−1
m=−dAm(n)ξn+m with

Am(n) =
−1

αr,0

r−1∑
i=0

(
n

i−m

)
αi,i−m =

∑
0≤i≤r−1

0≤i−m≤d

−αi,i−m
αr,0(i−m)!

ni−m

and ni−m = n(n− 1) · · · (n− (i−m− 1)) is a falling facto-
rial. The expression above for Am is well-defined, since we
assumed that d < p, and shows that Am is a polynomial of
degree at most d.

From this, writing the algorithm is easy. We need two sub-
routines: from falling factorial(F), which computes the
expansion on the monomial basis of a polynomial of the form
F =

∑
0≤j≤n fjn

j , and eval(F,N), which computes the val-

ues of a polynomial F at the N points {0, . . . , N−1}. The
former can be done using the divide-and-conquer algorithm
of [8, Section 3] in time O (̃n); the latter by the algorithm
of [17, Chapter 10], in time O (̃deg(F) + N). The previous
discussion leads to the algorithm solutions_operator be-
low. In view of the previous discussion, the cost analysis is
straightforward (at step 2., notice that all required factorials
can be computed in time O(d)). The costs reported in the
pseudo-code indicate the total amount of time spent at the
corresponding line.

Algorithm solutions_operator

Input: a differential operator L ∈ `[[t]]dp〈∂〉 of bidegree
(d, r), with d < p; an integer N
Output: the solutions f0, . . . , fr−1 at precision N

1. for m = −d, . . . , r − 1:

2. Âm =
∑

0≤i≤r−1,0≤i−m≤d
−αi,i−m

αr,0(i−m)!
xi−m

Cost: O(d(r + d))

3. Am = from falling factorial(Âm)
Cost: O (̃d(r + d))

4. Store eval(Am, N − r)
Cost: O (̃(d+N)(r + d))

5. for i = 0, . . . , r − 1:

6. fi = [0, . . . , 0, 1, 0, . . . , 0] (ith unit vector of length r)
Cost: O(r2)

7. for n = 0, . . . , N − r − 1:

8. fi,n+r =
∑r−1
m=−dAm(n)fi,n+m

Cost: O(rN(r + d))

9. return f0, . . . , fr−1

Altogether, we obtain the following result, where we use
the assumption N > d to simplify slightly the cost estimate.

Lemma 3.5. Suppose that p < d. Given a positive N > d,
the classes of f0, . . . , fr−1 modulo `[[t]]dp≥N can be computed

with at most O(rN(r + d)) operations in `.

In particular, Algorithm solutions_operator has a bet-
ter cost than fundamental_solutions when d = O(rω−1).

4. COMPUTING THE P-CURVATURE
In all this section, we work over a field k of characteristic

p > 0. We consider a differential system Y ′ = AY of di-
mension r and denote by Ap the matrix of its p-curvature.
We write A = 1

fA
Ã, where fA is in k[x] and Ã is a matrix

with polynomial entries. Let d = max(deg fA,deg Ã), where

deg Ã is the maximal degree of the entries of Ã. We recall
([13, Prop. 3.2], [9, Lemma 1]) a bound on the size of Ap.
The bound follows from the recurrence (1), and it is tight.

Lemma 4.1. The entries of the matrix fpA·Ap are all poly-
nomials of degree at most dp.

The goal of this section is to prove the following theorem.

Theorem 4.2. There exists an algorithm (presented be-
low) which computes the matrix of the p-curvature of the
differential system Y ′ = AY in O

(̃
pdrω) operations in k.

It is instructive to compare this cost with the size of the out-
put. By Lemma 4.1, the latter is an r× r matrix whose en-
tries are rational functions whose numerator and denomina-
tor have degree' pd, so its size is roughly pdr2 elements of k.
Our result O

(̃
pdrω) is quasi-optimal if we assume that ma-

trix multiplication can be performed in quasi-optimal time.

4.1 A formula for the p-curvature
Let Ap denote the matrix of the p-curvature of the dif-

ferential system Y ′ = AY (in the usual monomial basis).
The expression of Ap given at the very end of §2 is unfortu-
nately not well-suited for fast computation. The aim of this
subsection is to give an alternative formula for Ap using the
framework of divided powers.

In order to relate k(x) and a ring `[[t]]dp, we pick a sepa-
rable polynomial S ∈ k[x] which is coprime with fA and set

` = k[x]/S (which is thus not necessarily a field). Let a ∈ `
be the class of x. We consider the ring homomorphism:

ϕS : k[x] → `[t]/tp

f(x) 7→ f(t+ a) mod tp.

Regarding the differential structure, we observe that ϕS
commutes with the derivation when `[t]/tp is endowed with
the standard derivation d

dt
. We furthermore deduce from

the fact that S and fA are coprime that ϕS extends to a
homomorphism of differential rings k[x][1

fA
] → `[t]/tp that

we continue to denote by ϕS . We set ψS = ι ◦ ϕS where
ι is the canonical inclusion `[t]/tp ↪→ `[[t]]dp (cf §3). As
before, ψS commutes with the derivation. Finally, because
S is separable, we can check that ϕS is surjective and its
kernel is the ideal generated by Sp. Hence ϕS induces an
isomorphism:

k[x]/Sp = k[x][1
fA

]/Sp
∼−→ `[t]/tp. (8)

Let YS be a fundamental system of solutions of the dif-
ferential system Y ′ = ψS(A) · Y , i.e. YS is an r × r ma-
trix with coefficients in `[[t]]dp such that YS(0) = Ir and
Y ′S = ψS(A) · YS . The existence of YS is guaranteed by
Proposition 3.4. Moreover, the matrix YS is invertible be-
cause YS(0) = Ir is.

Proposition 4.3. Keeping the above notations, we have:

ϕS(Ap) = −Y (p)
S · Y −1

S (9)

where Y
(p)
S is the matrix obtained from YS by taking the p-th

derivative entry-wise.

Proof. We set ZS = Y −1
S and let (M,∂) denote the

differential module over `[[t]]dp associated to the differen-
tial system Y ′ = ψS(A)Y . Let y1, . . . , yr denote the col-
umn vectors of YS . They are all solutions of the system
Y ′ = ψS(A)Y , meaning that ∂(yi) = 0 for all i. Further-
more, if (e1, . . . , er) is the canonical basis of (`[[t]]dp)r, we
have the matrix relations: tYS · e = y and e = tZS · y where
y (resp. e) is the column vector whose coordinates are the
vectors yi’s (resp. the ei’s). Applying ∂ to the above rela-
tion, we find ∂(e) = tZ′S ·y+tZS ·∂(y) = tZ′S ·y and iterating

this p times, we deduce ∂p(e) = tZ
(p)
S · y = tZ

(p)
S · tYS · e.

On the other hand, the matrix ψS(Ap) of the p-curvature is
defined by the relation ∂p(e) = tψS(Ap)·e. Therefore we get

ψS(Ap) = YS ·Z(p)
S . Now differentiating p times the relation

YSZS = Ir, we find Y
(p)
S ZS + YS ·Z(p)

S = 0. Combining this
with the above formula for ψS(Ap) concludes the proof.

In our setting, the matrix Ap has coefficients in k[x][1
fA

]

(cf Lemma 4.1), from which we deduce that ψS(Ap) has
actually coefficients in the subring `[t]/tp of `[[t]]dp. There-
fore, using Eq. (9), one can compute ψS(Ap) knowing only

YS modulo the ideal `[[t]]dp≥2p.
One can actually go further in this direction and establish

a variant of Eq. (9) giving an expression of ψS(Ap) which

involves only the reduction of YS modulo `[[t]]dp≥p. To make
this precise, we need an extra notation. Given an integer
i ∈ [0, p) and a polynomial f ∈ `[t]/tp (resp. a matrix
M with coefficients in `[t]/tp), we write Coeff(f, i) (resp.
Coeff(M, i)) for the coefficient in ti in f (resp. in M).

Proposition 4.4. Keeping the above notations, we have:

ψS(Ap) = −ȲS · Y (p)
S (0) · Ȳ −1

S

= ȲS · Coeff(A · ȲS , p−1) · Ȳ −1
S (10)

where we have set ȲS = YS mod `[[t]]dp≥p.

Proof. Differentiating p times the relation Y ′S = ψS(A) ·
YS , we observe that Y

(p)
S is solution of the same differ-

ential system Y ′ = ψS(A)Y . Hence, thanks to unique-
ness in Cauchy–Lipschitz Theorem, we have the relation

Y
(p)
S = YS ·Y (p)

S (0). The first part of the Proposition follows
by plugging this in Eq. (9) and reducing the result modulo

`[[t]]dp≥p. To establish the second part, it is now enough to

notice that the relation Y ′S = ψS(A) · YS implies:

Y
(p)
S (0) = (A · YS)(p−1)(0) = −Coeff(A · ȲS , p−1)

the minus sign coming from (p− 1)! ≡ −1 (mod p).

Remark 4.5. We can rephrase Proposition 4.4 as fol-
lows: letting y1, . . . , yr denote the column vectors of YS and
ȳi ∈ (`[t]/tp)r be the reduction of yi, the p-curvature of A
modulo tp is the linear endomorphism of (`[t]/tp)r whose
matrix in the basis (ȳ1, . . . , ȳr) is Coeff(A · ȲS , p−1). It is
worth remarking that the latter matrix has coefficients in the
subring ` of `[t]/tp.

Remembering Eq. (8), we conclude that Proposition 4.4
allows us to compute the image of the p-curvature Ap mod-
ulo Sp. The strategy of our algorithm now becomes clear:
we first compute Ap modulo Sp for various polynomials S
and, when we have collected enough congruences, we put
them together to reconstruct Ap. The first step is detailed
in §4.2 just below and the second step is the subject of §4.3.

4.2 Local calculations
In all this subsection, we fix a separable polynomial S ∈

k[x] and denote by m its degree. Our goal is to design an
algorithm for computing the matrix Ap modulo Sp. After
Proposition 4.4, the main remaining algorithmic issue is the
effective computation of the isomorphism ϕS and its inverse.

Applying ϕS and its inverse. We remark that ϕS factors
as follows:

k[x]/Sp → k[x, t]/〈S, (t− x)p〉 → k[x, t]/〈S, tp〉
x 7→ t 7→ t+ a.

Applying the right-hand mapping, or its inverse, amounts
to doing a polynomial shift in degree p with coefficients in
k[x]/S. Using the divide-and-conquer algorithm of [16], this
can be done in O (̃p) arithmetic operations in k[x]/S, which
is O (̃pm) operations in k. Thus, we are left with the left-
hand factor, say ϕ?S . Applying it is straightforward and can
be achieved in O (̃pm) operations in k. It then only remains
to explain how one can apply efficiently ϕ?S

−1.
We start by determining the image of x by ϕ?S

−1; call it
y = ϕ?S

−1(x); we may identify it with its canonical preim-
age in k[x], which has degree less than pm. Write y =∑

0≤i<p ζi(x
p)xi, with every ζi in k[x] of degree less than

m (so that ζi(x
p) has degree less than pm). Its image

through ϕ?S is
∑

0≤i<p ζi(t
p)ti, which is

∑
0≤i<p ζi(x

p)ti,

since xp = tp in k[x, t]/〈S, (t− x)p〉.
Since ϕ?S(y) = x, we deduce that ζ0(xp) = x mod S and

ζi(x
p) = 0 mod S for i = 1, . . . , p − 1. The first equality

implies that xp generates k[x]/S, so the fact that ζ0 has
degree less than m implies that ζ0 is the unique polynomial
with this degree constraint such that ζ0(xp) = x mod S. The
other equalities then imply that ζi = 0 for i = 1, . . . , p− 1.

In order to compute ζ0, we first compute ν = xp mod
S, using O (̃m log(p)) operations in k. Then, we have to
find the unique polynomial ζ0 of degree less than m such
that ζ0(ν) = x mod S. In general, one can compute ζ0 in
O(mω) operations in k by solving a linear system. In the
common case where m < p, there exists a better solution.
Indeed, denote by tr : k[x]/S → k the k-linear trace form
and write ti = tr(νi) and t′i = tr(xνi), for i = 0, . . . ,m −
1. Then formulas such as those in [25] allow us to recover
ζ0 from t = (t0, . . . , tm−1) and t′ = (t′0, . . . , t

′
m−1) in time

O (̃m). These formulas require that m < p and that S′

be invertible modulo S, which is ensured by our assumption
that S is separable. To compute t and t′, we can use Shoup’s
power projection algorithm [29], which takes O(m(ω+1)/2)
operations in k.

Once ζ0 is known, to apply the mapping ϕ?S
−1 to an el-

ement g(x, t), we proceed coefficient-wise in t. Write g =∑
0≤i<p gi(x)ti, with all gi of degree less than m. Then

ϕ?S
−1(g) =

∑
0≤i<p (gi(ζ0) mod T) (xp)xi where T is the

polynomial obtained by raising all coefficients of S to the
power p, so that S(x)p = T (xp).

Computing T takes O(m log(p)) operations in k; then,
computing each term gi(ζ0) mod T can be done using the

Brent-Kung modular composition algorithm forO(m(ω+1)/2)

operations in k; the total is O(m(ω+1)/2p). Finally, the eval-
uation at xp and the summation needed to obtain ϕ?S

−1(g)
do not involve any arithmetic operations.

Remark 4.6. In the case where S = xm− c (where c ∈ k
and p does not divide m), there actually exists a quite simple
explicit formula for ϕ?S

−1: it takes t to x and x to cqxpn

where n and q are integers satisfying the Bézout’s relation
pn + qm = 1. Using this, one can compute ϕ?S

−1(g) in
O (̃pm) operations in k in this special case.

Conclusion. Let us call phiS and phiS_inverse the two
subroutines described above for computing ϕS and its in-
verse respectively. Proposition 4.4 leads to the following
algorithm for computing the p-curvature modulo Sp.

Algorithm local_p_curvature

Input: a polynomial S and a matrix AS ∈Mr(k[x]/Sp)
Output: the p-curvature of the system Y ′ = AS Y

1. AS,` = phiS(AS)
Cost: O (̃pr2m) operations in k (with m = degS)

2. compute a fund. system of solutions YS ∈Mr(`[t]/t
p)

of the system Y ′ = AS,`Y at precision p.
Cost: O (̃prω) op. in ` using fundamental_solutions

Remark: Here ` = k[x]/S

3. Ap,` = YS · Coeff(AYS , p−1) · Y −1
S

at precision O(tp)
Cost: O (̃prω) operations in `

4. Ap = phiS_inverse(Ap,`)
Cost: O (̃pr2mω) operations in k in general

O (̃pr2m(ω+1)/2) operations in k if m < p

5. return Ap.

To conclude with, it is worth remarking that implementing
the algorithm local_p_curvature can be done using usual
power series arithmetic: indeed, we only need to perform
computations in the quotient `[[t]]dp/`[[t]]dp≥p which is iso-

morphic to `[t]/tp by Corollary 3.3. Furthermore, we note
that if we are using the algorithm fundamental_solutions

at line 2, then Y −1
S can be computed by performing an ex-

tra loop in fundamental_solutions; indeed the matrix Z
we obtain this way is exactly Y −1

S .

4.3 Gluing
We recall that we have started with a differential system

Y ′ = AY (with A = 1
fA
Ã) and that our goal is to compute

the matrix Ap of its p-curvature. Lemma 4.1 gives bounds
on the size of the entries of Ap. We need another lemma,
which ensures that we can find enough small “evaluation
points” (lying in a finite extension of k). Let Fp denote the
prime subfield of k.

Lemma 4.7. Given a positive integer D and a nonzero
polynomial f ∈ k[x], there exist pairwise coprime polynomi-
als S1, . . . , Sn ∈ Fp[x] with n ≤ D such that:
•
∑n
i=1 degSi ≥ D

• for all i, the polynomial Si is coprime with f and has
degree at most 1 + logp(D + deg f).

Proof. Letm be the smallest integer such that pm ≥ D+
deg f . Clearly m ≤ 1+logq(D+deg f) ≤ 1+logp(D+deg f).
Let Fpm be an extension of Fp of degree m and K be the
compositum of k and Fpm . Let S1, . . . , St be the mini-
mal polynomials over Fp (without repetition) of all elements
in Fpm ⊂ K which are not a root of f . We then have
degSi ≤ m for all i and

∑t
i=1 degSi ≥ pm − deg f ≥ D.

It remains now to define n as the smallest integer such that∑n
i=1 degSi ≥ D. Minimality implies

∑n−1
i=1 degSi < D

and thus n ≤ D. Therefore S1, . . . , Sn satisfy all the re-
quirements of the lemma.

The above proof yields a concrete algorithm for producing
a sequence S1, . . . , Sn satisfying the properties of Lemma
4.7: we run over elements in Fpm and, for each new element,
append its minimal polynomial over Fp to the sequence (Si)
unless it is not coprime with f . We continue this process
until the condition

∑n
i=1 degSi ≥ D holds. Keeping in mind

the logarithmic bound on m, we find that the complexity of
this algorithm is at most O (̃D + deg f) operations in k.
Let us call generate_points the resulting routine: it takes
as input the parameters f and D and return an admissible
sequence S1, . . . , Sn.

We are now ready to present our algorithm for computing
the p-curvature:

Algorithm p_curvature

Input: a matrix A written as A = 1
fA
· Ã

Output: the p-curvature of the differential system Y ′ = AY

1. S1, . . . , Sn = generate_points(fA, d+ 1)
Cost: O (̃d) operations in k
Remark: we have n = O(d) and degSi = O(log d), ∀i

2. for i = 1, . . . , n:
Ai,p = local_p_curvature(Si, A mod Spi)

Cost: O (̃pdrω) operations in k

3. compute B ∈Mr(k[x]) with entries of degree ≤ pd
such that B ≡ fpA ·Bi (mod Spi) for all i

Cost: O (̃pdr2) operations in k

4. return 1
f
p
A
·B

In view of the previous discussion and Lemma 4.1, the cor-
rectness and the cost analysis of the algorithm p_curvature

are both straightforward. Hence, Theorem 4.2 is proved.
We conclude this subsection with three remarks. First,

when applying Chinese Remainder Theorem (CRT) on line
3 of Algorithm p_curvature, we notice that all moduli Spi
are polynomials in xp. This allows the following optimiza-
tion. Writing fpA · Bi ≡

∑p−1
j=0 Bi,j(x

p)xj (mod Spi (x)) and
denoting by Cj the unique solution of degree at most d to
the congruence system:

Bj(x) ≡ Bi,j(x) (mod Ti(x)) where Ti(x
p) = Spi (x)

we have B =
∑p−1
j=0 Bj(x)xj . This basically allows us to re-

place one CRT with polynomials of degree dp by p CRT with
polynomials of degree d. We save this way the polynomial
factors in log(p) in the complexity.

Second, instead of working with n polynomials Si, one
may alternatively choose a unique polynomial S of the form
S = Xm − a where m ≥ d is an integer not divisible by p
and a ∈ k are such that S and fA are coprime. This avoids
the use of Chinese Remainder Theorem and the resulting
complexity stays in O (̃pdrω) provided that we use Remark
4.6 in order to compute the inverse of ϕS .

Third, we observe that the algorithm p_curvature is very
easily parallelizable. Indeed, each iteration of the main loop
(on line 2) is completely independent from the others. Thus,
they all can be performed in parallel. Moreover, according
to the first remark (just above), the application of the Chi-
nese Remainder Theorem (on line 3) splits into pr2 smaller
independent problems and can therefore be efficiently par-
allelized as well.

4.4 The case of differential operators
To conclude with, we would like to discuss the case of a

differential operator L = ar∂
r + ar−1∂

r−1 + · · · + a1∂ + a0
with ai ∈ k[x] for all i, of maximal degree d.

Recall that the p-curvature of L is that of the differen-
tial module (A〈∂〉/A〈∂〉L, ∂−C), where C is the compan-
ion matrix associated to L as in (3). Applying directly
the formulas in Proposition 4.4 requires the knowledge of
the solutions of the system Y ′ = −CY . It is in fact eas-
ier to compute solutions for the system X ′ = tCX, since
we saw that these solutions are the vectors of the form
t(y, y′, . . . , y(r−1)), where y is a solution of L. This is how-
ever harmless: the p-curvatures Ap and Bp of the respective
systems Y ′ = −CY and X ′ = tCX (which are so-called ad-
joint) satisfy Ap = −tBp. Thus, we can use the formulas
given above to compute ϕS(Bp), and deduce ϕS(Ap) for a
negligible cost. Equivalently, one may notice that the funda-
mental matrices of solutions of our two systems are transpose
of one another, up to sign.

Moreover, instead of using the second formula of Propo-
sition 4.4 to compute the local p-curvatures, we recommend

using the first one, which is ϕS(Bp) = −XS ·X(p)
S (0) ·X−1

S

where XS is a fundamental system of solutions of X ′ = tCX
and X̄S denotes its reduction in Mr(`[t]/t

p). If f0, . . . , fr−1

are solutions of the system (7), the (i, j)-th entry of XS

is just f
(i)
j . Hence the matrices X̄S and X

(p)
S (0) can be

obtained from the knowledge of the image of fi’s modulo

p

157 281 521 983 1 811 3 433 6 421 12 007

d = 5, r = 5
0.39 s 0.71 s 1.22 s 2.34 s 4.41 s 8.93 s 18.0 s 36.1 s

0.26 s 0.76 s 2.69 s 9.05 s 32.6 s 145 s 593 s 2 132 s

d = 5, r = 11
1.09 s 2.05 s 3.65 s 7.05 s 12.6 s 26.7 s 53.3 s 109 s

1.25 s 3.70 s 12.8 s 45.5 s 163 s 725 s 2 942 s −

d = 5, r = 20
2.93 s 5.25 s 9.52 s 17.7 s 32.5 s 68.1 s 139 s 288 s

4.29 s 12.4 s 42.5 s 153 s 548 s 2 460 s − −

d = 11, r = 20
6.89 s 13.3 s 22.6 s 45.0 s 80.4 s 167 s 342 s 711 s

11.6 s 34.7 s 121 s 486 s 1 943 s − − −

d = 20, r = 20
14.0 s 25.1 s 49.9 s 94.0 s 176 s 357 s 733 s 1 472 s

27.0 s 84.5 s 314 s 1 283 s − − − −
Running times obtained with Magma V2.19-4 on an AMD Opteron 6272 machine at 2GHz and 8GB RAM, running Linux.

Figure 1: Average running time on random inputs of various sizes

`[[t]]dp≥p+r just by reorganizing coefficients (and possibly mul-
tiplying by some factorials depending on the representation
of elements of `[[t]]dp we are using).

As for the fi’s, they can be computed by the algorithm so-

lutions_operator (provided its assumptions are satisfied).
We need finally to compute X−1

S : since XS(0) is the iden-
tity matrix, this can be done either using Newton iterator,
a divide-and-conquer approach or a combination of both,
which computes the inverse of XS at a small precision, and
uses divide-and-conquer techniques for higher ones (the lat-
ter being the most efficient in practice). All these remarks
do speed up the execution of our algorithms when d is not
too large compared to r.

Last but not least, we notice that, in the case of differ-
ential operators, the matrix Ap is easily deduced from its
first column. Indeed, writing Ap = (ai,j)0≤i,j<r and letting
cj = ar−1,j∂

r−1 + · · · + a1,j∂ + a0,j ∈ k(x)〈∂〉 be the dif-
ferential operator obtained from the j-column of Ap, it is
easily checked that cj+1 is the remainder in the Euclidean
division of ∂cj by L. Comparing orders, we further find

cj+1 = ∂cj − lc(cj)

ar
L where lc(cj) is the leading coefficient

of cj . This remark is interesting because it permits to save
memory: indeed, instead of storing all local p-curvatures
Ap,`, we can just store their first column. Doing this, we
can reconstruct the first column of Ap using the Chinese
Remainder Theorem (cf §4.3) and then compute the whole
matrix Ap using the recurrence.

5. IMPLEMENTATION AND TIMINGS
We implemented our algorithms in Magma in the case of

differential operators; the source code is available at https:
//github.com/schost. Figure 1 gives running times for ran-
dom operators of degrees (d, r) in k[x]〈∂〉 and compares them
with running times of (a fraction free version of) Katz’s al-
gorithm which consists in computing the recursive sequence
(Ai) until i = p. In each cell, the first line (resp. the second
line) corresponds to the running time obtained with our al-
gorithm (resp. Katz’s algorithm); a dash indicates that the
corresponding running time exceeded one hour. Our bench-
marks rather well reflect the predicted dependence with re-
spect to p: quasi-linear for our algorithm and quadratic for
Katz’s algorithm.

Larger examples (than those presented in Fig. 1) are also
reachable: for instance, we computed the first column of the

p-curvature of a “small” multiple of the operator φ
(5)
H con-

sidered in [10, Appendix B.3] modulo the prime 27449. This
operator has bidegree (d, r) = (108, 28). The computation

took about 19 hours and the size of the output in human-
readable format is about 1GB (after bzip2 compression, it
decreases to about 300MB).

6. REFERENCES
[1] P. Berthelot. Cohomologie cristalline des schémas de caractéristique p > 0.

Lecture Notes in Mathematics, Vol. 407. Springer-Verlag, Berlin-New
York, 1974.

[2] P. Berthelot and A. Ogus. Notes on crystalline cohomology. Princeton
University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978.

[3] A. Bostan, S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, and
N. Zenine. Globally nilpotent differential operators and the square Ising
model. J. Phys. A, 42(12):125206, 50, 2009.

[4] A. Bostan, X. Caruso, and E. Schost. A fast algorithm for computing the
characteristic polynomial of the p-curvature. In ISSAC’14, pages 59–66.
ACM, New York, 2014.

[5] A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, É. Schost, and A. Sedoglavic.
Fast computation of power series solutions of systems of differential
equations. In 18th ACM-SIAM Symposium on Discrete Algorithms, pages
1012–1021, 2007. New Orleans, January 2007.

[6] A. Bostan and M. Kauers. Automatic classification of restricted lattice
walks. In FPSAC’09, DMTCS Proc., AK, pages 201–215. 2009.

[7] A. Bostan and M. Kauers. The complete generating function for Gessel
walks is algebraic. Proc. Amer. Math. Soc., 138(9):3063–3078, 2010. With an
appendix by Mark van Hoeij.

[8] A. Bostan and É. Schost. Polynomial evaluation and interpolation on
special sets of points. J. Complexity, 21(4):420–446, 2005.

[9] A. Bostan and É. Schost. Fast algorithms for differential equations in
positive characteristic. In ISSAC’09, pages 47–54. ACM, New York, 2009.

[10] S. Boukraa, S. Hassani, J.-M. Maillard, and N. Zenine. Singularities of
n-fold integrals of the Ising class and the theory of elliptic curves. J. Phys.
A, 40(39):11713–11748, 2007.

[11] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over
arbitrary algebras. Acta Inform., 28(7):693–701, 1991.

[12] A. Chambert-Loir. Théorèmes d’algébricité en géométrie diophantienne
(d’après J.-B. Bost, Y. André, D. & G. Chudnovsky). Séminaire Bourbaki,
282(886):175–209, 2002.

[13] T. Cluzeau. Factorization of differential systems in characteristic p. In
ISSAC’03, pages 58–65. ACM Press, 2003.

[14] T. Cluzeau and M. van Hoeij. A modular algorithm for computing the
exponential solutions of a linear differential operator. J. Symbolic Comput.,
38(3):1043–1076, 2004.

[15] F. L. Gall. Powers of tensors and fast matrix multiplication. In ISSAC’14,
pages 296–303, 2014.

[16] J. von zur Gathen and J. Gerhard. Fast algorithms for Taylor shifts and
certain difference equations. In ISSAC’97, pages 40–47. ACM, 1997.

[17] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, Cambridge, second edition, 2003.

[18] D. Harvey, J. van der Hoeven, and G. Lecerf. Faster polynomial
multiplication over finite fields. http://arxiv.org/abs/1407.3361, 2014.

[19] N. M. Katz. Algebraic solutions of differential equations (p-curvature and
the Hodge filtration). Invent. Math., 18:1–118, 1972.

[20] N. M. Katz. A conjecture in the arithmetic theory of differential
equations. Bull. Soc. Math. France, (110):203–239, 1982.

[21] W. F. Keigher and F. L. Pritchard. Hurwitz series as formal functions. J.
Pure Appl. Algebra, 146(3):291–304, 2000.

[22] M. van der Put. Differential equations in characteristic p. Compositio
Mathematica, 97:227–251, 1995.

[23] M. van der Put. Reduction modulo p of differential equations. Indag.
Mathem., 7(3):367–387, 1996.

[24] M. van der Put and M. Singer. Galois theory of linear differential equations.
Springer, 2003.

[25] F. Rouillier. Solving zero-dimensional systems through the rational
univariate representation. Appl. Algebra Engrg. Comm. Comput., 9(5):433–461,
1999.

[26] A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der
Charakteristik 2. Acta Informatica, 7:395–398, 1977.

[27] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen.
Computing, 7:281–292, 1971.

[28] É. Schost. Multivariate power series multiplication. In ISSAC’05, pages
293–300. ACM, 2005.

[29] V. Shoup. Fast construction of irreducible polynomials over finite fields.
Journal of Symbolic Computation, 17(5):371–391, 1994.

[30] Y. Tang. Algebraic solutions of differential equations over the projective
line minus three points. http://arxiv.org/abs/1412.7875, 2014.

https://github.com/schost
https://github.com/schost
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1412.7875

	Introduction
	Theoretical setting
	Series with divided powers
	The ring [[t]]dp
	Computations with divided powers
	The Cauchy–Lipschitz Theorem

	Computing the p-curvature
	A formula for the p-curvature
	Local calculations
	Gluing
	The case of differential operators

	Implementation and timings
	References

