Computing modular Galois representations

Nicolas Mascot
University of Warwick

CLap-CLap seminar
February $9^{\text {th }} 2017$

The modular curve $X_{1}(N)$

For $N \in \mathbb{N}$, let

$$
\Gamma_{1}(N)=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\, \gamma \equiv\left[\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right] \bmod N\right.\right\}
$$

The modular curve $X_{1}(N)$

For $N \in \mathbb{N}$, let

$$
\Gamma_{1}(N)=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\, \gamma \equiv\left[\begin{array}{cc}
1 & * \\
0 & 1
\end{array}\right] \bmod N\right.\right\} .
$$

Let $\mathcal{H}^{\bullet}=\mathcal{H} \cup \mathbb{Q} \cup\{\infty\}$. Then $\Gamma_{1}(N) \backslash \mathcal{H}^{\bullet}$ is a compact Riemann surface.

Credit: Helena Verrill

The modular curve $X_{1}(N)$

For $N \in \mathbb{N}$, let

$$
\Gamma_{1}(N)=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\, \gamma \equiv\left[\begin{array}{cc}
1 & * \\
0 & 1
\end{array}\right] \bmod N\right.\right\} .
$$

Let $\mathcal{H}^{\bullet}=\mathcal{H} \cup \mathbb{Q} \cup\{\infty\}$. Then $\Gamma_{1}(N) \backslash \mathcal{H}^{\bullet}$ is a compact Riemann surface, which is the set of \mathbb{C}-points of a nonsingular, complete algebraic curve $X_{1}(N)$ defined over \mathbb{Q} and which has good reduction away from N.

We call its Jacobian $J_{1}(N)$.

Hecke operators

Let $\alpha=\left[\begin{array}{ll}1 & 0 \\ 0 & p\end{array}\right]$ where $p \in \mathbb{N}$ is prime, and $\Gamma=\Gamma_{1}(N)$. The correspondence

$$
\begin{aligned}
& \left(\Gamma \cap \alpha^{-1} \Gamma \alpha\right) \backslash \mathcal{H} \xrightarrow[\alpha]{\sim}\left(\alpha \Gamma \alpha^{-1} \cap \Gamma\right) \backslash \mathcal{H}^{\bullet} \\
& X_{1}(N) \xlongequal[T_{p}]{\rightleftharpoons} X_{1}(N)
\end{aligned}
$$

extends to an operator on $J_{1}(N)$. We let \mathbb{T} be the ring generated by these operators for $p \in \mathbb{N}$ prime.

Hecke operators

Let $\alpha=\left[\begin{array}{ll}1 & 0 \\ 0 & p\end{array}\right]$ where $p \in \mathbb{N}$ is prime, and $\Gamma=\Gamma_{1}(N)$. The correspondence

$$
\begin{gathered}
\left(\Gamma \cap \alpha^{-1} \Gamma \alpha\right) \backslash \mathcal{H} \stackrel{\alpha}{\sim}\left(\alpha\left\lceil\alpha^{-1} \cap \Gamma\right) \backslash \mathcal{H}^{\bullet}\right. \\
\quad X_{1}(N) \xlongequal[T_{p}]{\rightleftarrows} X_{1}(N)
\end{gathered}
$$

extends to an operator on $J_{1}(N)$. We let \mathbb{T} be the ring generated by these operators for $p \in \mathbb{N}$ prime.

Besides, let $\Gamma_{0}(N)=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\, \gamma \equiv\left[\begin{array}{c}* \\ 0 \\ *\end{array}\right] \bmod N\right.\right\}$. Then $\Gamma_{0}(N) / \Gamma_{1}(N) \simeq(\mathbb{Z} / N \mathbb{Z})^{*}$ by $\left[\begin{array}{cc}a & b \\ c & d\end{array}\right] \mapsto d \bmod N$, whence operators $\langle d\rangle$ for $d \in(\mathbb{Z} / N \mathbb{Z})^{*}$. Actually $\langle d\rangle \in \mathbb{T}$.

Newforms

Let $\mathcal{N}_{k}\left(\Gamma_{1}(N)\right) \subset \mathcal{S}_{k}\left(\Gamma_{1}(N)\right)$ be the finite set of newforms.

Newforms

Let $\mathcal{N}_{k}\left(\Gamma_{1}(N)\right) \subset \mathcal{S}_{k}\left(\Gamma_{1}(N)\right)$ be the finite set of newforms.
Whenever $M \mid N$, we have

$$
\begin{aligned}
\mathcal{N}_{k}\left(\Gamma_{1}(M)\right) & \stackrel{\hookrightarrow}{\hookrightarrow} \mathcal{S}_{k}\left(\Gamma_{1}(N)\right) \\
f(\tau) \longmapsto & \longleftrightarrow f(t \tau) \quad\left(t \left\lvert\, \frac{N}{M}\right.\right) .
\end{aligned}
$$

Newforms

Let $\mathcal{N}_{k}\left(\Gamma_{1}(N)\right) \subset \mathcal{S}_{k}\left(\Gamma_{1}(N)\right)$ be the finite set of newforms.
For all $f=q+\sum_{n \geqslant 2} a_{n} q^{n} \in \mathcal{N}_{k}\left(\Gamma_{1}(N)\right)$,

$$
\forall p \in \mathbb{N}, \quad T_{p} f=a_{p} f,
$$

so that

$$
K_{f}=\mathbb{Q}\left(a_{2}, a_{3}, \cdots\right)
$$

is actually a number field. Also, there exists

$$
\varepsilon_{f}:(\mathbb{Z} / N \mathbb{Z})^{*} \longrightarrow K_{f}^{*}
$$

such that

$$
\langle d\rangle f=\varepsilon_{f}(d) f .
$$

Newforms

Let $\mathcal{N}_{k}\left(\Gamma_{1}(N)\right) \subset \mathcal{S}_{k}\left(\Gamma_{1}(N)\right)$ be the finite set of newforms.
For all $f=q+\sum_{n \geqslant 2} a_{n} q^{n} \in \mathcal{N}_{k}\left(\Gamma_{1}(N)\right)$,

$$
K_{f}=\mathbb{Q}\left(a_{2}, a_{3}, \cdots\right)
$$

is actually a number field. Also, there exists

$$
\varepsilon_{f}:(\mathbb{Z} / N \mathbb{Z})^{*} \longrightarrow K_{f}^{*}
$$

such that

$$
\langle d\rangle f=\varepsilon_{f}(d) f .
$$

For all $\sigma \in \operatorname{Aut}(\overline{\mathbb{Q}})$,

$$
f^{\sigma}=q+\sum_{n \geqslant 2} \sigma\left(a_{n}\right) q^{n} \in \mathcal{N}_{k}\left(\Gamma_{1}(N)\right)
$$

and $K_{f \sigma}=K_{f}^{\sigma}, \varepsilon_{f \sigma}=\sigma \circ \varepsilon_{f}$.

Modular Galois representations

$$
\text { Let } f=q+\sum_{n=2}^{+\infty} a_{n} q^{n} \in \mathcal{N}_{k}\left(\Gamma_{1}(N)\right), k \geqslant 2
$$

Modular Galois representations

Let $f=q+\sum_{n=2}^{+\infty} a_{n} q^{n} \in \mathcal{N}_{k}\left(\Gamma_{1}(N)\right), k \geqslant 2$.
Pick a prime \mathfrak{l} of K_{f} lying over $\ell \in \mathbb{N}$, and let $K_{f, \mathfrak{l}}$ be the \mathfrak{l}-adic completion of K_{f}.

Modular Galois representations

$$
\text { Let } f=q+\sum_{n=2}^{+\infty} a_{n} q^{n} \in \mathcal{N}_{k}\left(\Gamma_{1}(N)\right), k \geqslant 2
$$

Pick a prime \mathfrak{l} of K_{f} lying over $\ell \in \mathbb{N}$, and let $K_{f, \mathfrak{l}}$ be the \mathfrak{l}-adic completion of K_{f}.

Theorem (Deligne, Serre, Shimura, 1971)

There exists a unique continuous Galois representation

$$
R_{f, l}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2}\left(K_{f, l}\right),
$$

which is unramified outside ℓN, and such that for all $p \nmid \ell N$, $R_{f, l}\left(\right.$ Frob $\left._{p}\right)$ has characteristic polynomial

$$
X^{2}-a_{p} X+\varepsilon_{f}(p) p^{k-1} \in K_{f, l}[X] .
$$

Modular Galois representations

Let $f=q+\sum_{n=2}^{+\infty} a_{n} q^{n} \in \mathcal{N}_{k}\left(\Gamma_{1}(N)\right), k \geqslant 2$.
Pick a prime \mathfrak{l} of K_{f} lying over $\ell \in \mathbb{N}$, and let $\mathbb{F}_{\mathfrak{l}}$ be its residual field.

Theorem (Deligne, Serre, Shimura, 1971)

There exists a unique continuous Galois representation

$$
\rho_{f, l}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\mathfrak{l}}\right),
$$

which is unramified outside ℓN, and such that for all $p \nmid \ell N$, $\rho_{f, 1}\left(\right.$ Frob $\left._{p}\right)$ has characteristic polynomial

$$
X^{2}-a_{p} X+\varepsilon_{f}(p) p^{k-1} \in \mathbb{F}_{\mathbf{l}}[X] .
$$

Modular Galois representations

Theorem (Deligne, Serre, Shimura, 1971)

There exists a unique continuous Galois representation

$$
\rho_{f, \mathfrak{l}}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\mathfrak{l}}\right)
$$

which is unramified outside ℓN, and such that for all $p \nmid \ell N$, $\rho_{f, l}\left(\right.$ Frob $\left._{p}\right)$ has characteristic polynomial

$$
X^{2}-a_{p} X+\varepsilon_{f}(p) p^{k-1} \in \mathbb{F}_{\mathfrak{r}}[X]
$$

Application (Couveignes, Edixhoven, 2006)

$\rho_{f, l}$ can be computed in time polynomial in ℓ, and $a_{p} \bmod \mathfrak{l}$ in time polynomial in $\log p$.

Goal: compute $\rho_{f, l}$.

Motivation

- The Galois representation itself,

Motivation

- The Galois representation itself,
- The field $L=\overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f, r}}$ is a Galois number field, with Galois group (almost) $G L_{2}\left(\mathbb{F}_{\mathfrak{l}}\right)$, whose ramification behaviour is well-understood \rightsquigarrow Inverse Galois problem for GL_{2} and PGL_{2}, Gross's problem, construction of very lightly ramified fields,

Motivation

- The Galois representation itself,
- The field $L=\overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f, r}}$ is a Galois number field, with Galois group (almost) $\mathrm{GL}_{2}\left(\mathbb{F}_{\mathfrak{l}}\right)$, whose ramification behaviour is well-understood \rightsquigarrow Inverse Galois problem for GL_{2} and PGL_{2}, Gross's problem, construction of very lightly ramified fields,
- Fast computation of Fourier coefficients: computation of $a_{p} \bmod \mathfrak{l}=\operatorname{Tr} \rho_{f, \mathfrak{l}}\left(\right.$ Frob $\left._{p}\right)$ in time $(\log p)^{2+\varepsilon(p)}$.

Example 1

Theorem (M.)
 - The field cut out by $\rho_{\Delta, 31}$ is the field generated by the $31^{\text {st }}$ roots of unity and by the roots of

$$
\begin{aligned}
& x^{64}-21 x^{63}+118 x^{62}+527 x^{61}-8587 x^{60}+18383 x^{59}+263035 x^{58}-2095879 x^{57}+2416016 x^{56}+44283128 x^{55}-240474192 x^{54} \\
& +84687350 x^{53}+3638349286 x^{52}-12617823980 x^{51}-10297265505 x^{50}+155175311479 x^{49}-196432825560 x^{48}-771645455342 x^{47} \\
& +1482783472303 x^{46}+2641351695834 x^{45}+4650870173875 x^{44}-45480241563019 x^{43}-54597672402738 x^{42}+501026042999912 x^{41} \\
& -496541492329624 x^{40}-712343608491160 x^{39}+5302741451178477 x^{38}-30548025690548139 x^{37}+34878663423629056 x^{36} \\
& +288784532405339724 x^{35}-874206875792459963 x^{34}-825384106177640249 x^{33}+6958723996166230970 x^{32} \\
& -4535708640900181166 x^{31}-30017821501048367756 x^{30}+56583574288118086410 x^{29}+60507682456797414358 x^{28} \\
& -278043951776326798765 x^{27}+87013091280485835964 x^{26}+765685764124853689529 x^{25}-1039521490897195574873 x^{24} \\
& -857609563094973739451 x^{23}+3508677503532089909529 x^{22}-2261986657658172377618 x^{21}-5701736296366236274465 x^{20} \\
& +13022859322612898456054 x^{19}-641003473636730532862 x^{18}-29939230256003209147601 x^{17}+25447129369769267020402 x^{16} \\
& +36125137963345226955671 x^{15}-55314588133331740131989 x^{14}-18703775559594899286772 x^{13}+43941206930666596631797 x^{12} \\
& +17651378415866112635127 x^{11}+10928239966752626190216 x^{10}-81873964056071560411072 x^{9}-14246438965830190561265 x^{8} \\
& +128298548281018972743749 x^{7}-50060167623901195766317 x^{6}-45764538130200829948820 x^{5}+18800719945150143916844 x^{4} \\
& -8179472634137717244072 x^{3}+62290435026572905701979 x^{2}-71710139962834196823306 x+25842211492123062583556 .
\end{aligned}
$$

(several CPU years).

Example 1

Theorem (M.)

- The field cut out by $\rho_{\Delta, 31}$ is the field generated by the $31^{\text {st }}$ roots of unity and by the roots of $x^{64}-21 x^{63}+\cdots$.
- We have the following values:

p	$\rho_{\Delta, 31}\left(\right.$ Frob $\left._{p}\right)$ similar to	$\tau(p) \bmod 31$
$10^{1000}+453$	$\left[\begin{array}{cc}30 & 0 \\ 0 & 20\end{array}\right]$	19
$10^{1000}+1357$	$\left[\begin{array}{cc}0 & 2 \\ 1 & 13\end{array}\right]$	13
$10^{1000}+4351$	$\left[\begin{array}{cc}4 & 1 \\ 0 & 4\end{array}\right]$	8

(30s of CPU time per p).

Example 2

Theorem (M.)

Let $f=q+2 q^{2}-4 q^{3}+O\left(q^{4}\right) \in \mathcal{N}_{6}\left(\Gamma_{0}(5)\right)$.
The field cut out by the projective representation attached to f mod 13 is the field generated by the roots of

$$
x^{14}-x^{13}-26 x^{11}+39 x^{10}+104 x^{9}-299 x^{8}-195 x^{7}+676 x^{6}+481 x^{5}-156 x^{4}-39 x^{3}+65 x^{2}-14 x+1 .
$$

Example 2

Theorem (M.)

Let $f=q+2 q^{2}-4 q^{3}+O\left(q^{4}\right) \in \mathcal{N}_{6}\left(\Gamma_{0}(5)\right)$.
The field cut out by the projective representation attached to $f \bmod 13$ is the field generated by the roots of

$$
x^{14}-x^{13}-26 x^{11}+39 x^{10}+104 x^{9}-299 x^{8}-195 x^{7}+676 x^{6}+481 x^{5}-156 x^{4}-39 x^{3}+65 x^{2}-14 x+1 .
$$

This polynomial and this field were not known before. Its root discriminant is $47.816 \cdots$, whereas the next best known example has root discriminant $69.939 \ldots$.

Conjecture (Roberts, M.)
This field is the one that has the smallest discriminant among all the Galois number fields with Galois group $\mathrm{PGL}_{2}\left(\mathbb{F}_{13}\right)$.

Explicit construction of the representation

The Tate module of $J_{1}(N)$

When A is an Abelian variety over \mathbb{Q} of dimension g, define

$$
\mathrm{Ta}_{\ell} A=\lim _{n \in \mathbb{N}} A\left[\ell^{n}\right]
$$

a free \mathbb{Z}_{ℓ}-module of rank $2 g$, and

$$
V_{\ell} A=\operatorname{Ta}_{\ell} A \otimes_{\mathbb{Z}} \mathbb{Q}=\operatorname{Ta}_{\ell} A \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell} .
$$

The Tate module of $J_{1}(N)$

When A is an Abelian variety over \mathbb{Q} of dimension g, define

$$
\mathrm{Ta}_{\ell} A=\lim _{\underset{n \in \mathbb{N}}{ } A\left[\ell^{n}\right], \text {, }, \text {. }}
$$

a free \mathbb{Z}_{ℓ}-module of rank $2 g$, and

$$
V_{\ell} A=\operatorname{Ta}_{\ell} A \otimes_{\mathbb{Z}} \mathbb{Q}=\operatorname{Ta}_{\ell} A \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell} .
$$

The action of Galois yields a representation

$$
R_{A, \ell}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2 g}\left(\mathbb{Q}_{\ell}\right)
$$

which is unramified away from ℓ and the primes of bad reduction of A.

The Tate module of $J_{1}(N)$

The action of Galois yields a representation

$$
R_{A, \ell}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2 g}\left(\mathbb{Q}_{\ell}\right)
$$

which is unramified away from ℓ and the primes of bad reduction of A.

Take now $A=J_{1}(N)$. Then $V_{\ell} J_{1}(N)$ is actually a free $\left(\mathbb{T} \otimes \mathbb{Q}_{\ell}\right)$-module of rank 2 , whence

$$
R_{J_{1}(N), \ell}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2}\left(\mathbb{T} \otimes \mathbb{Q}_{\ell}\right)
$$

unramified away from ℓN.

The Tate module of $J_{1}(N)$

The action of Galois yields a representation

$$
R_{A, \ell}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2 g}\left(\mathbb{Q}_{\ell}\right)
$$

which is unramified away from ℓ and the primes of bad reduction of A.

Take now $A=J_{1}(N)$. Then $V_{\ell} J_{1}(N)$ is actually a free $\left(\mathbb{T} \otimes \mathbb{Q}_{\ell}\right)$-module of rank 2 , whence

$$
R_{J_{1}(N), \ell}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2}\left(\mathbb{T} \otimes \mathbb{Q}_{\ell}\right)
$$

unramified away from ℓN.
For $p \nmid \ell N$, the characteristic polynomial of the image of Frob p_{p} is

$$
X_{2}-T_{p} X+p\langle p\rangle \in\left(\mathbb{T} \otimes \mathbb{Q}_{\ell}\right)[X]
$$

Modular Abelian varieties

For $f \in \mathcal{N}_{2}\left(\Gamma_{1}(N)\right)$, let

$$
I_{f}=\{T \in \mathbb{T} \mid T f=0\},
$$

and define

$$
A_{f}=J_{1}(N) / I_{f} J_{1}(N) .
$$

Modular Abelian varieties

For $f \in \mathcal{N}_{2}\left(\Gamma_{1}(N)\right)$, let

$$
I_{f}=\{T \in \mathbb{T} \mid T f=0\}
$$

and define

$$
A_{f}=J_{1}(N) / I_{f} J_{1}(N) .
$$

Properties

- $I_{f \sigma}=I_{f}$, so $A_{f \sigma}=A_{f}$.
- A_{f} is a simple Abelian variety defined over \mathbb{Q}.
- $\operatorname{dim} A_{f}=\left[K_{f}: \mathbb{Q}\right]$.
- $K_{f} \hookrightarrow \operatorname{End}\left(A_{f}\right) \otimes \mathbb{Q}$ via $a_{p} \mapsto T_{p}, \varepsilon_{f}(d) \mapsto\langle d\rangle$. Indeed, $K_{f} \simeq\left(\mathbb{T} / I_{f}\right) \otimes \mathbb{Q}$.
- $L\left(A_{f}, s\right)=\prod_{\sigma} L\left(f^{\sigma}, s\right) \stackrel{\text { def }}{=} \prod_{\sigma} \sum_{n \geqslant 1} \frac{\sigma\left(a_{n}\right)}{n^{s}}$.

The decomposition of $J_{1}(N)$

Over $\mathbb{Q}, J_{1}(N)$ is isogenous to

$$
\prod_{M \mid N} \prod_{f \in G_{\mathbb{Q}} \backslash \mathcal{N}_{2}\left(\Gamma_{1}(M)\right)} A_{f}^{\sigma_{0}(N / M)} .
$$

So

$$
V_{\ell} J_{1}(N) \simeq \prod_{M \mid N} \prod_{f \in G_{\mathbb{Q}} \backslash \mathcal{N}_{2}\left(\Gamma_{1}(M)\right)}\left(V_{\ell} A_{f}\right)^{\sigma_{0}(N / M)}
$$

as $G_{\mathbb{Q}}$-modules.

The decomposition of $J_{1}(N)$

Example: $N=22$
$\mathcal{S}_{2}\left(\Gamma_{1}(1)\right)=\mathcal{S}_{2}\left(\Gamma_{1}(2)\right)=0$.
At level 11, we have one rational newform

$$
f_{11}=q-2 q^{2}-q^{3}+O\left(q^{4}\right) .
$$

At level 22, the newforms are

$$
f_{22}=q+\zeta_{5} q^{2}+\left(\zeta_{5}^{3}-\zeta_{5}-1\right) q^{3}+O\left(q^{4}\right)
$$

and its Galois conjugates.
$\rightsquigarrow \mathcal{S}_{2}\left(\Gamma_{1}(22)\right)=\underbrace{\left\langle f_{11}(\tau), f_{11}(2 \tau)\right\rangle}_{\text {Old }} \oplus \underbrace{\left\langle\text { Galois conjugates of } f_{22}\right\rangle}_{\text {New }}$,

$$
J_{1}(22) \sim A_{f_{11}}^{2} \times A_{f_{22}} .
$$

$A_{f_{11}}$ is the elliptic curve of conductor 11; $A_{f_{22}}$ is a simple Abelian variety of dimension 4.
So $\operatorname{genus}\left(X_{1}(22)\right)=6$.

Recovering the modular representations

$V_{\ell} A_{f}$ is a \mathbb{Q}_{ℓ}-vector space of dimension $2\left[K_{f}: \mathbb{Q}\right]$, and actually a free $K_{f} \otimes \mathbb{Q}_{\ell}$-module of rank 2.

Recovering the modular representations

$V_{\ell} A_{f}$ is a \mathbb{Q}_{ℓ}-vector space of dimension $2\left[K_{f}: \mathbb{Q}\right]$, and actually a free $K_{f} \otimes \mathbb{Q}_{\ell}$-module of rank 2.

As $K_{f} \otimes \mathbb{Q}_{\ell} \simeq \prod_{r \mid \ell} K_{f, l}$, we recover the representations

$$
R_{f, l}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2}\left(K_{f, l}\right)
$$

inside $V_{\ell} A_{f} \subset V_{\ell} J_{1}(N)$.

Recovering the modular representations

$V_{\ell} A_{f}$ is a \mathbb{Q}_{ℓ}-vector space of dimension $2\left[K_{f}: \mathbb{Q}\right]$, and actually a free $K_{f} \otimes \mathbb{Q}_{\ell}$-module of rank 2 .

As $K_{f} \otimes \mathbb{Q}_{\ell} \simeq \prod_{\llbracket \mid \ell} K_{f, l}$, we recover the representations

$$
R_{f, l}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2}\left(K_{f, l}\right)
$$

inside $V_{\ell} A_{f} \subset V_{\ell} J_{1}(N)$.

In particular, if \mathfrak{l} is of degree $1, \rho_{f, l}$ is afforded by

$$
V_{f, \mathfrak{l}}=\bigcap_{p} \operatorname{Ker}\left(\left.T_{p}\right|_{\left.J_{1}(N) \ell \ell\right]}-a_{p}(f) \bmod \mathfrak{l}\right) \subset J_{1}(N)[\ell] .
$$

Weight lowering

Weight-lowering theorem

Suppose $\ell \geqslant 5$ and $\ell \nmid N$, and let $f \in \mathcal{N}_{k}\left(\Gamma_{1}(N)\right)$ be a newform of weight $3 \leqslant k \leqslant \ell$. There exists a newform $f_{2} \in \mathcal{N}_{2}\left(\Gamma_{1}(\ell N)\right)$ of weight 2 and a prime $\mathfrak{l}_{2} \mid \ell$ of $K_{f_{2}}$ such that $f \bmod \mathfrak{l}=f_{2} \bmod \mathfrak{l}_{2}$.

Weight lowering

Weight-lowering theorem

Suppose $\ell \geqslant 5$ and $\ell \nmid N$, and let $f \in \mathcal{N}_{k}\left(\Gamma_{1}(N)\right)$ be a newform of weight $3 \leqslant k \leqslant \ell$. There exists a newform $f_{2} \in \mathcal{N}_{2}\left(\Gamma_{1}(\ell N)\right)$ of weight 2 and a prime $\mathfrak{l}_{2} \mid \ell$ of $K_{f_{2}}$ such that

$$
f \bmod \mathfrak{l}=f_{2} \bmod \mathfrak{l}_{2}
$$

Thus $\rho_{f_{2}, \mathfrak{l}_{2}} \simeq \rho_{f, \mathfrak{l}}$, so that we can use the same geometric construction again. We now find $\rho_{f, \mathrm{l}}$ in $J_{1}(\ell N)[\ell]$.

Weight lowering

Thus $\rho_{f_{2}, l_{2}} \simeq \rho_{f, \mathfrak{l}}$, so that we can use the same geometric construction again. We now find $\rho_{f, r}$ in $J_{1}(\ell N)[\ell]$.

Example

Take $f=\Delta \in \mathcal{N}_{12}\left(\Gamma_{1}(1)\right)$. If $\ell \geqslant 13$, there exists

$$
f_{2} \in \mathcal{N}_{2}\left(\Gamma_{1}(\ell)\right), \quad \mathfrak{l}_{2} \subset K_{f_{2}}
$$

such that

$$
f_{2} \bmod \mathfrak{l}_{2}=\Delta \bmod \ell \operatorname{in} \mathbb{F}_{\ell}[[q]]
$$

so that $\rho_{\Delta, \ell}$ is afforded in $J_{1}(\ell)[\ell]$.

The modular curve $X_{H}(\ell N)$

The condition

$$
f \bmod \mathfrak{l}=f_{2} \bmod \mathfrak{l}_{2}
$$

implies that

$$
\forall x, \varepsilon_{f_{2}}(x) \bmod \mathfrak{l}_{2}=x^{k-2} \varepsilon_{f}(x)
$$

$\rho_{f, 1}$ actually occurs in the Jacobian of the modular curve $X_{H}(\ell N)$ attached to

$$
\Gamma_{H}(\ell N)=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma_{0}(\ell N) \right\rvert\, d \in H\right\}
$$

where $H=\operatorname{Ker}\left(\varepsilon_{f_{2}} \bmod \mathfrak{l}_{2}\right) \leqslant(\mathbb{Z} / \ell N \mathbb{Z})^{*}$.
The genus of this curve is sometimes much smaller than that of $X_{1}(\ell N)$.

Computing in the modular Jacobian

Divisors on curves

Let X be a proper, nonsingular, absolutely integral curve of genus g over a field K.

A divisor on X is a formal \mathbb{Z}-linear combination of points of X.
The degree of $\sum_{P \in X} n_{P} P$ is $\sum_{P \in X} n_{P} \in \mathbb{Z}$.
Divisors of degree 0 form a subgroup $\operatorname{Div}^{0}(X)$ of the group $\operatorname{Div}(X)$ of divisors on X.

A divisor is principal if it is the divisor (f) of a function $f \in K(X)^{*}$. Principal divisors form a subgroup $\operatorname{Ppal}(X)$ of $\operatorname{Div}^{0}(X)$.
We define $\operatorname{Pic}^{0}(X)=\operatorname{Div}^{0}(X) / \operatorname{Ppal}(X)$.

Divisors on curves

Divisors on curves

Divisors of degree 0 form a subgroup $\operatorname{Div}^{0}(X)$ of the group $\operatorname{Div}(X)$ of divisors on X.

A divisor is principal if it is the divisor (f) of a function $f \in K(X)^{*}$. Principal divisors form a subgroup $\operatorname{Ppal}(X)$ of $\operatorname{Div}^{0}(X)$.
We define $\operatorname{Pic}^{0}(X)=\operatorname{Div}^{0}(X) / \operatorname{Ppal}(X)$.
We have

$$
\operatorname{Pic}^{0}(X)(L) \simeq \operatorname{Jac}(X)(L)
$$

for all extensions L of K.

The Abel-Jacobi map

Assume that $K=\mathbb{C}$, and let $\omega_{1}, \cdots, \omega_{g}$ be a basis of holomorphic differentials on X.

The Abel-Jacobi map

Assume that $K=\mathbb{C}$, and let $\omega_{1}, \cdots, \omega_{g}$ be a basis of holomorphic differentials on X.

A period is a vector

$$
\lambda=\int_{\gamma}\left(\omega_{i}\right)_{i=1 \cdots g} \in \mathbb{C}^{g}
$$

where γ is a loop on X.
Peridods forms a lattice $\Lambda \in \mathbb{C}^{g}$, and $\operatorname{Jac}(X)(\mathbb{C}) \simeq \mathbb{C}^{g} / \Lambda$.

The Abel-Jacobi map

Assume that $K=\mathbb{C}$, and let $\omega_{1}, \cdots, \omega_{g}$ be a basis of holomorphic differentials on X.

A period is a vector

$$
\lambda=\int_{\gamma}\left(\omega_{i}\right)_{i=1 \cdots g} \in \mathbb{C}^{g}
$$

where γ is a loop on X.
Peridods forms a lattice $\Lambda \in \mathbb{C}^{g}$, and $\operatorname{Jac}(X)(\mathbb{C}) \simeq \mathbb{C}^{g} / \Lambda$.
If we fix $O \in X$, we can define

$$
\begin{aligned}
\jmath 0^{: X} & \longrightarrow \mathbb{C}^{g} / \Lambda \\
P & \longmapsto \int_{0}^{P}\left(\omega_{i}\right)_{i=1 \cdots g},
\end{aligned}
$$

The Abel-Jacobi map

A period is a vector

$$
\lambda=\int_{\gamma}\left(\omega_{i}\right)_{i=1 \cdots g} \in \mathbb{C}^{g}
$$

where γ is a loop on X.
Peridods forms a lattice $\Lambda \in \mathbb{C}^{g}$, and $\operatorname{Jac}(X)(\mathbb{C}) \simeq \mathbb{C}^{g} / \Lambda$.
If we fix $O \in X$, we can define

$$
\begin{aligned}
\jmath 0: X & \longrightarrow \mathbb{C}^{g} / \Lambda \\
P & \longmapsto \int_{O}^{P}\left(\omega_{i}\right)_{i=1 \cdots g},
\end{aligned}
$$

extend it additively to $\operatorname{Div}(X)$, and restrict it to

$$
\begin{aligned}
\jmath: \operatorname{Div}^{0}(X) & \longrightarrow \mathbb{C}^{g} / \Lambda \\
\sum_{n}\left(P_{n}^{\prime}-P_{n}\right) & \longmapsto \sum_{n} \int_{P_{n}}^{P_{n}^{\prime}}\left(\omega_{i}\right)_{i=1 \cdots g}
\end{aligned}
$$

The Abel-Jacobi map

If we fix $O \in X$, we can define

$$
\begin{aligned}
\jmath 0: X & \longrightarrow \mathbb{C}^{g} / \Lambda \\
P & \longmapsto \int_{0}^{P}\left(\omega_{i}\right)_{i=1 \cdots g},
\end{aligned}
$$

extend it additively to $\operatorname{Div}(X)$, and restrict it to

$$
\begin{aligned}
\jmath: \operatorname{Div}^{0}(X) & \longrightarrow \mathbb{C}^{g} / \Lambda \\
\sum_{n}\left(P_{n}^{\prime}-P_{n}\right) & \longmapsto \sum_{n} \int_{P_{n}}^{P_{n}^{\prime}}\left(\omega_{i}\right)_{i=1 \ldots g}
\end{aligned}
$$

which no longer depends on O and whose kernel is exactly $\operatorname{Ppal}(X)$, whence

$$
\jmath: \operatorname{Pic}^{0}(X) \xrightarrow{\sim} \mathbb{C}^{g} / \Lambda=\operatorname{Jac}(X) .
$$

Makdisi's algorithms: basic blocks

When $D \in \operatorname{Div}(X)$, write

$$
H^{0}(D)=\left\{f \in K(X)^{*} \mid(f)+D \geqslant 0\right\} \cup\{0\} .
$$

Lemma (Basic blocks)

- If $\operatorname{deg} D_{1}, \operatorname{deg} D_{2} \geqslant 2 g+1$, then the multiplication map

$$
H^{0}\left(D_{1}\right) \otimes H^{0}\left(D_{2}\right) \longrightarrow H^{0}\left(D_{1}+D_{2}\right)
$$

is surjective.

- $f \cdot H^{0}(D)=H^{0}(D-(f))$.
- If $\operatorname{deg} D_{1} \geqslant 2 g$, then

$$
H^{0}\left(D_{2}-D_{1}\right)=\left\{f \in K(X) \mid f \cdot H^{0}\left(D_{1}\right) \subset H^{0}\left(D_{2}\right)\right\} .
$$

Makdisi's algorithms: representation of elements

Fix a divisor D_{0} on X of degree $d_{0} \geqslant 2 g+1$, and let

$$
V=H^{0}\left(3 D_{0}\right), \quad V_{2}=H^{0}\left(6 D_{0}\right)
$$

whose elements are represented by multipoint evaluation, or Taylor series (or both !)

Makdisi's algorithms: representation of elements

Fix a divisor D_{0} on X of degree $d_{0} \geqslant 2 g+1$, and let

$$
V=H^{0}\left(3 D_{0}\right), \quad V_{2}=H^{0}\left(6 D_{0}\right)
$$

whose elements are represented by multipoint evaluation, or Taylor series (or both !)

A point $x \in \operatorname{Jac}(X)=\operatorname{Pic}^{0}(X) \leftrightarrow$ the subspace

$$
W_{D_{x}}=V\left(-D_{x}\right)=H^{0}\left(3 D_{0}-D_{x}\right) \subset V
$$

where $D_{x} \geqslant 0$ is a divisor of degree d_{0} such that

$$
\left[D_{x}-D_{0}\right]=x .
$$

D_{x} is not unique!

Makdisi's algorithms: group law

Let $W_{D_{1}}, W_{D_{2}}$ represent two points $x_{1}, x_{2} \in \operatorname{Jac}(X)$.

Makdisi's algorithms: group law

Let $W_{D_{1}}, W_{D_{2}}$ represent two points $x_{1}, x_{2} \in \operatorname{Jac}(X)$.
(1) Compute $H^{0}\left(6 D_{0}-D_{1}-D_{2}\right)=W_{D_{1}} \cdot W_{D_{2}}$.

Makdisi's algorithms: group law

Let $W_{D_{1}}, W_{D_{2}}$ represent two points $x_{1}, x_{2} \in \operatorname{Jac}(X)$.
(1) Compute $H^{0}\left(6 D_{0}-D_{1}-D_{2}\right)=W_{D_{1}} \cdot W_{D_{2}}$.
(2) Compute

$$
H^{0}\left(3 D_{0}-D_{1}-D_{2}\right)=\left\{f \in V \mid f \cdot V \subset H^{0}\left(6 D_{0}-D_{1}-D_{2}\right)\right\} .
$$

Makdisi's algorithms: group law

Let $W_{D_{1}}, W_{D_{2}}$ represent two points $x_{1}, x_{2} \in \operatorname{Jac}(X)$.
(1) Compute $H^{0}\left(6 D_{0}-D_{1}-D_{2}\right)=W_{D_{1}} \cdot W_{D_{2}}$.
(2) Compute

$$
H^{0}\left(3 D_{0}-D_{1}-D_{2}\right)=\left\{f \in V \mid f \cdot V \subset H^{0}\left(6 D_{0}-D_{1}-D_{2}\right)\right\} .
$$

(3) Take $s \in H^{0}\left(3 D_{0}-D_{1}-D_{2}\right)$, so that

$$
(s)=-3 D_{0}+D_{1}+D_{2}+D_{3}, \quad \text { some } D_{3} \geqslant 0 .
$$

Compute $H_{0}\left(6 D_{0}-D_{1}-D_{2}-D_{3}\right)=s \cdot V$.

Makdisi's algorithms: group law

Let $W_{D_{1}}, W_{D_{2}}$ represent two points $x_{1}, x_{2} \in \operatorname{Jac}(X)$.
(1) Compute $H^{0}\left(6 D_{0}-D_{1}-D_{2}\right)=W_{D_{1}} \cdot W_{D_{2}}$.
(2) Compute

$$
H^{0}\left(3 D_{0}-D_{1}-D_{2}\right)=\left\{f \in V \mid f \cdot V \subset H^{0}\left(6 D_{0}-D_{1}-D_{2}\right)\right\}
$$

(3) Take $s \in H^{0}\left(3 D_{0}-D_{1}-D_{2}\right)$, so that

$$
(s)=-3 D_{0}+D_{1}+D_{2}+D_{3}, \quad \text { some } D_{3} \geqslant 0
$$

Compute $H_{0}\left(6 D_{0}-D_{1}-D_{2}-D_{3}\right)=s \cdot V$.
(9) Compute $W_{D_{3}}=H^{0}\left(3 D_{0}-D_{3}\right)$

$$
=\left\{f \in V \mid f \cdot H^{0}\left(3 D_{0}-D_{1}-D_{2}\right) \subset H_{0}\left(6 D_{0}-D_{1}-D_{2}-D_{3}\right)\right\}
$$

Makdisi's algorithms: group law

Let $W_{D_{1}}, W_{D_{2}}$ represent two points $x_{1}, x_{2} \in \operatorname{Jac}(X)$.
(1) Compute $H^{0}\left(6 D_{0}-D_{1}-D_{2}\right)=W_{D_{1}} \cdot W_{D_{2}}$.
(2) Compute

$$
H^{0}\left(3 D_{0}-D_{1}-D_{2}\right)=\left\{f \in V \mid f \cdot V \subset H^{0}\left(6 D_{0}-D_{1}-D_{2}\right)\right\}
$$

(3) Take $s \in H^{0}\left(3 D_{0}-D_{1}-D_{2}\right)$, so that

$$
(s)=-3 D_{0}+D_{1}+D_{2}+D_{3}, \quad \text { some } D_{3} \geqslant 0
$$

Compute $H_{0}\left(6 D_{0}-D_{1}-D_{2}-D_{3}\right)=s \cdot V$.
(4) Compute $W_{D_{3}}=H^{0}\left(3 D_{0}-D_{3}\right)$

$$
=\left\{f \in V \mid f \cdot H^{0}\left(3 D_{0}-D_{1}-D_{2}\right) \subset H_{0}\left(6 D_{0}-D_{1}-D_{2}-D_{3}\right)\right\}
$$

Then $W_{D_{3}}$ represents $x_{3} \in \operatorname{Jac}(X)$ such that $x_{1}+x_{2}+x_{3}=0$

Makdisi's algorithms on the modular curve

Let $f_{0} \in \mathcal{S}_{2}\left(\Gamma_{1}(\ell N)\right)$ be defined over \mathbb{Q}.
We take $D_{0}=\left(f_{0}\right)+c_{1}+c_{2}+c_{3}$, where the c_{i} are cusps such that $\sum c_{i}$ is defined over \mathbb{Q}.

$$
\rightsquigarrow H^{0}\left(D_{0}\right) \simeq \mathcal{S}_{2}\left(\Gamma_{1}(\ell N)\right) \oplus\left\langle E_{1,2}, E_{1,3}\right\rangle \subset \mathcal{M}_{2}\left(\Gamma_{1}(\ell N)\right),
$$

where $E_{1, i}$ is an Eisenstein series of weight 2 that vanishes at all the cusps except c_{1} and c_{i}.

Makdisi's algorithms on the modular curve

Let $f_{0} \in \mathcal{S}_{2}\left(\Gamma_{1}(\ell N)\right)$ be defined over \mathbb{Q}.
We take $D_{0}=\left(f_{0}\right)+c_{1}+c_{2}+c_{3}$, where the c_{i} are cusps such that $\sum c_{i}$ is defined over \mathbb{Q}.

$$
\rightsquigarrow H^{0}\left(D_{0}\right) \simeq \mathcal{S}_{2}\left(\Gamma_{1}(\ell N)\right) \oplus\left\langle E_{1,2}, E_{1,3}\right\rangle \subset \mathcal{M}_{2}\left(\Gamma_{1}(\ell N)\right),
$$

where $E_{1, i}$ is an Eisenstein series of weight 2 that vanishes at all the cusps except c_{1} and c_{i}.

We represent these forms by their q-expansion at all cusps.

Makdisi's algorithms on the modular curve

Let $f_{0} \in \mathcal{S}_{2}\left(\Gamma_{1}(\ell N)\right)$ be defined over \mathbb{Q}.
We take $D_{0}=\left(f_{0}\right)+c_{1}+c_{2}+c_{3}$, where the c_{i} are cusps such that $\sum c_{i}$ is defined over \mathbb{Q}.

$$
\rightsquigarrow H^{0}\left(D_{0}\right) \simeq \mathcal{S}_{2}\left(\Gamma_{1}(\ell N)\right) \oplus\left\langle E_{1,2}, E_{1,3}\right\rangle \subset \mathcal{M}_{2}\left(\Gamma_{1}(\ell N)\right),
$$

where $E_{1, i}$ is an Eisenstein series of weight 2 that vanishes at all the cusps except c_{1} and c_{i}.

We represent these forms by their q-expansion at all cusps.
We then compute $V=H^{0}\left(3 D_{0}\right) \subset \mathcal{M}_{6}\left(\Gamma_{1}(\ell N)\right)$ by multiplication.

Computation of the representation

Assumptions

From now on, we assume that $f \in \mathcal{N}_{k}\left(\Gamma_{1}(N)\right)$ and $\mathfrak{l} \subset K_{f}$ are such that

- $\operatorname{deg} \mathfrak{l}=1$,
- $\ell \nmid N$ and $k \leqslant \ell$,
- $\operatorname{Im} \rho_{f, \mathrm{l}} \supset \mathrm{SL}_{2}\left(\mathbb{F}_{\mathrm{l}}\right)$.

How does one compute such a representation?

In order to compute $\rho_{f, \text { l }}$, we first compute the number field

$$
L=\overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f, \mathrm{l}}}=\mathbb{Q}\left(x, x \in V_{f, \mathrm{l}}\right)
$$

that it cuts out, and then the image of the Frobenius elements.

How does one compute such a representation?

In order to compute $\rho_{f, l}$, we first compute the number field

$$
L=\overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f, \mathrm{l}}}=\mathbb{Q}\left(x, x \in V_{f, \mathrm{l}}\right)
$$

that it cuts out, and then the image of the Frobenius elements.

- If we were dealing with an elliptic curve, we could simply compute the division polynomial $\Phi_{\ell} \in \mathbb{Q}[X]$.

How does one compute such a representation

In order to compute $\rho_{f, \text { l }}$, we first compute the number field

$$
L=\overline{\mathbb{Q}}^{\operatorname{Ker} \rho f, \mathrm{t}}=\mathbb{Q}\left(x, x \in V_{f, \mathrm{l}}\right)
$$

that it cuts out, and then the image of the Frobenius elements.

- If we were dealing with an elliptic curve, we could simply compute the division polynomial $\Phi_{\ell} \in \mathbb{Q}[X]$.
- But we are dealing with the Jacobian $J_{1}(\ell)$, so this approach is intractable.

The analytic model comes in handy

In the elliptic curve case:

The analytic model comes in handy

In the elliptic curve case:

In the modular case, we work with divisors instead of points.

There is no \wp, so we must invert \jmath "by hand".

Strategy

Goal: compute $V_{f, l} \subset J_{1}(\ell N)[\ell]$.
(1) Period lattice Λ of $X_{1}(\ell N)$

High accuracy q-expansions, term-by-term integration
\rightsquigarrow analytic model of $J_{1}(\ell N)$
(2) Approximation over \mathbb{C} of the ℓ-torsion

Computation of divisors $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{1}(\ell N)\right)$ representing a basis of
$V_{f, 1} \subset J_{1}(\ell N)[\ell]$
(3) Evaluation of the ℓ-torsion

Choice of a "well-behaved" function $\alpha: V_{f, 1} \longrightarrow \overline{\mathbb{Q}}$
\rightsquigarrow number field L cut out by $\rho_{f, 1}$
(4) Frobenius elements

Recipe to compute the image of the Frobenius at p, given $p \nmid \ell N$

Step 1

- Period lattice Λ of $X_{1}(\ell N)$

High accuracy q-expansions, term-by-term integration
\rightsquigarrow analytic model of $J_{1}(\ell N)$
Approximation over \mathbb{C} of the ℓ-torsion
Computation of divisors $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{1}(\ell N)\right)$ representing a basis of $V_{f, 1} \subset J_{1}(\ell N)[\ell]$

Evaluation of the ℓ-torsion
 Choice of a "well-behaved" function $\alpha: V_{f, 1} \longrightarrow \overline{\mathbb{Q}}$

\rightsquigarrow number field L cut out by $\rho_{f, r}$

Frobenius elements

Recipe to compute the image of the Frobenius at p, given $p \nmid \ell N$

Periods of the modular curve $X_{1}(\ell N)$

Periods of the modular curve $X_{1}(\ell N)$

Analytic model of $J_{1}(\mathrm{lN})$

Let $\omega_{1}, \cdots, \omega_{g}$ be a basis of $\Omega^{1}\left(X_{1}(\ell N)\right) \simeq S_{2}\left(\Gamma_{1}(\ell N)\right)$. Integrate the differentials $\omega_{i}(\tau) d \tau$ along the curves γ_{j}. This yields a lattice $\Lambda=\left\langle\left(\int_{\gamma_{j}} \omega_{i}\right)_{1 \leqslant i \leqslant g}\right\rangle_{1 \leqslant j \leqslant 2 g} \subset \mathbb{C}^{g}$, and $J_{1}(\ell)=\mathbb{C}^{g} / \Lambda$.

Periods of the modular curve $X_{1}(\ell N)$

Analytic model of $J_{1}(\mathrm{lN})$

Let $\omega_{1}, \cdots, \omega_{g}$ be a basis of $\Omega^{1}\left(X_{1}(\ell N)\right) \simeq S_{2}\left(\Gamma_{1}(\ell N)\right)$. Integrate the differentials $\omega_{i}(\tau) d \tau$ along the curves γ_{j}. This yields a lattice $\Lambda=\left\langle\left(\int_{\gamma_{j}} \omega_{i}\right)_{1 \leqslant i \leqslant g}\right\rangle_{1 \leqslant j \leqslant 2 g} \subset \mathbb{C}^{g}$, and $J_{1}(\ell)=\mathbb{C}^{g} / \Lambda$.

These curves can be represented by modular symbols $\mathbb{S}_{2}\left(\Gamma_{1}(\ell N)\right) \subset \mathbb{M}_{2}\left(\Gamma_{1}(\ell N)\right)$.

Periods of the modular curve $X_{1}(\ell N)$

These curves can be represented by modular symbols $\mathbb{S}_{2}\left(\Gamma_{1}(\ell N)\right) \subset \mathbb{M}_{2}\left(\Gamma_{1}(\ell N)\right)$.

Credit: W. Stein

Explicit integration

Split the integration path, move the endpoints to ∞. \rightsquigarrow integrals of the form

$$
\int_{\infty}^{z}\left(\sum_{n=1}^{+\infty} \omega_{n} e^{2 \pi i n \tau}\right) d \tau=\frac{1}{2 \pi i} \sum_{n=1}^{+\infty} \frac{\omega_{n}}{n} e^{2 \pi i n z},
$$

which converge best for $\operatorname{Im} z \gg 0$.

Using the Hecke-module structure

\mathbb{T} also acts on modular symols, and integration is equivariant:

$$
\int_{T_{w}} \omega=\int_{w} T \omega .
$$

So, if we have a \mathbb{T}-generating family of symbols $\left(w_{i}\right)$ which are easy to integrate along, we can compute the periods:

$$
\begin{gathered}
\gamma_{j}=\sum_{i} T_{j, i} w_{i}, \quad T_{j, i} \in \mathbb{T} \\
\int_{\gamma_{j}} \omega=\int_{\sum_{i} T_{j, i} w_{i}} \omega=\sum_{i} \int_{w_{i}} T_{j, i} \omega=\sum_{i} \lambda\left(T_{j, i}, \omega\right) \int_{w_{i}} \omega .
\end{gathered}
$$

High precision q-expansions

Let $\omega=\sum_{n=0}^{+\infty} \omega_{n} q^{n} \in S_{2}\left(\Gamma_{1}(\ell N)\right)$, and let $B \in \mathbb{N}$.

High precision q-expansions

Let $\omega=\sum_{n=0}^{+\infty} \omega_{n} q^{n} \in S_{2}\left(\Gamma_{1}(\ell N)\right)$, and let $B \in \mathbb{N}$.
Theorem (Manin, 1972)
Using modular symbols, the ω_{n} can be computed for $n \leqslant B$ in a number of bit operations which is polynomial (but at least quadratic) in B.

High precision q-expansions

Let $\omega=\sum_{n=0}^{+\infty} \omega_{n} q^{n} \in S_{2}\left(\Gamma_{1}(\ell N)\right)$, and let $B \in \mathbb{N}$.
Theorem (Manin, 1972)
Using modular symbols, the ω_{n} can be computed for $n \leqslant B$ in a number of bit operations which is polynomial (but at least quadratic) in B.

Theorem (M., 2013)

The ω_{n} can be computed for $n \leqslant B$ in $\widetilde{O}(B)$ bit operations.

High precision q-expansions

Let $\omega=\sum_{n=0}^{+\infty} \omega_{n} q^{n} \in S_{2}\left(\Gamma_{1}(\ell N)\right)$, and let $B \in \mathbb{N}$.
(1) Bounds are known on the $\omega_{n} \rightsquigarrow$ we compute $\omega_{n} \bmod \mathfrak{p}$, with $p \mid \mathfrak{p}$ a large enough prime.

High precision q-expansions

Let $\omega=\sum_{n=0}^{+\infty} \omega_{n} q^{n} \in S_{2}\left(\Gamma_{1}(\ell N)\right)$, and let $B \in \mathbb{N}$.
(1) Bounds are known on the $\omega_{n} \rightsquigarrow$ we compute $\omega_{n} \bmod \mathfrak{p}$, with $p \mid \mathfrak{p}$ a large enough prime.
(2) We use $u=\frac{1}{j}=\frac{E_{4}^{3}-E_{6}^{2}}{1728 E_{4}^{3}}=\sum_{n=1}^{+\infty} u_{n} q^{n}$, the u_{n} are easy to compute $\bmod p$.

High precision q-expansions

Let $\omega=\sum_{n=0}^{+\infty} \omega_{n} q^{n} \in S_{2}\left(\Gamma_{1}(\ell N)\right)$, and let $B \in \mathbb{N}$.
(1) Bounds are known on the $\omega_{n} \rightsquigarrow$ we compute $\omega_{n} \bmod \mathfrak{p}$, with $p \mid \mathfrak{p}$ a large enough prime.
(2) We use $u=\frac{1}{j}=\frac{E_{4}^{3}-E_{6}^{2}}{1728 E_{4}^{3}}=\sum_{n=1}^{+\infty} u_{n} q^{n}$, the u_{n} are easy to compute $\bmod p$.
(0) There is an equation $\Phi(X, Y) \in \mathbb{F}_{\mathfrak{p}}[X, Y]$ with known degrees such that $\Phi(u, \omega / d u)=0$.

High precision q-expansions

Let $\omega=\sum_{n=0}^{+\infty} \omega_{n} q^{n} \in S_{2}\left(\Gamma_{1}(\ell N)\right)$, and let $B \in \mathbb{N}$.
(1) Bounds are known on the $\omega_{n} \rightsquigarrow$ we compute $\omega_{n} \bmod \mathfrak{p}$, with $p \mid \mathfrak{p}$ a large enough prime.
(2) We use $u=\frac{1}{j}=\frac{E_{4}^{3}-E_{6}^{2}}{1728 E_{4}^{3}}=\sum_{n=1}^{+\infty} u_{n} q^{n}$, the u_{n} are easy to compute $\bmod p$.
(0) There is an equation $\Phi(X, Y) \in \mathbb{F}_{\mathfrak{p}}[X, Y]$ with known degrees such that $\Phi(u, \omega / d u)=0$.
(0) We compute Φ by identification in $\mathbb{F}_{\mathfrak{p}}[[q]]$.

High precision q-expansions

Let $\omega=\sum_{n=0}^{+\infty} \omega_{n} q^{n} \in S_{2}\left(\Gamma_{1}(\ell N)\right)$, and let $B \in \mathbb{N}$.
(1) Bounds are known on the $\omega_{n} \rightsquigarrow$ we compute $\omega_{n} \bmod \mathfrak{p}$, with $p \mid \mathfrak{p}$ a large enough prime.
(2) We use $u=\frac{1}{j}=\frac{E_{4}^{3}-E_{6}^{2}}{1728 E_{4}^{3}}=\sum_{n=1}^{+\infty} u_{n} q^{n}$, the u_{n} are easy to compute $\bmod p$.
(3) There is an equation $\Phi(X, Y) \in \mathbb{F}_{\mathfrak{p}}[X, Y]$ with known degrees such that $\Phi(u, \omega / d u)=0$.
(4) We compute Φ by identification in $\mathbb{F}_{\mathfrak{p}}[[q]]$.
(5) From precomputed u_{n} for $n \leqslant B$, we compute ω by Newton-iterating on $\Phi(u, \omega / d u)=0$.

Step 2

\checkmark Period lattice Λ of $X_{1}(\ell N)$
High accuracy q-expansions, term-by-term integration
\rightsquigarrow analytic model of $J_{1}(\ell N)$

- Approximation over \mathbb{C} of the ℓ-torsion

Computation of divisors $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{1}(\ell N)\right)$ representing a basis of $V_{f, l} \subset J_{1}(\ell N)$

Evaluation of the ℓ-torsion

Choice of a "well-behaved" function $\alpha: V_{f, 1} \longrightarrow \overline{\mathbb{Q}}$
\rightsquigarrow number field L cut out by $\rho_{f, r}$

Frobenius elements

Recipe to compute the image of the Frobenius at p, given $p \nmid \ell N$

The setup

$$
\begin{aligned}
V_{f, l} & \left.\stackrel{\text { def }}{=} \bigcap_{p \text { prime }} \operatorname{Ker}\left(T_{p}-a_{p}\right)\right|_{J_{1}(\ell N)[\ell]} \\
& =\left.\bigcap_{p \leqslant B} \operatorname{Ker}\left(T_{p}-a_{p}\right)\right|_{J_{1}(\ell N)[\ell]}
\end{aligned}
$$

for B large enough.
The matrices of $T_{p} \circlearrowleft J_{1}(\ell N)[\ell]$ allow us to find

$$
x_{1}, x_{2} \in J_{1}(\ell N)[\ell](\mathbb{C})=\left(\mathbb{C}^{g} / \Lambda\right)[\ell]=\frac{1}{\ell} \Lambda / \Lambda
$$

which form a basis of $V_{f, l} \subset J_{1}(\ell N)[\ell]$.
Goal: compute $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{1}(\ell N)(\mathbb{C})\right)$ such that

$$
\left[D_{k}\right]=x_{k} .
$$

Abel-Jacobi and Newton

We have a target $x \in \mathbb{C}^{g} / \Lambda$, we want

$$
\jmath\left(\sum_{n}\left(P_{n}^{\prime}-P_{n}\right)\right) \stackrel{\text { def }}{=} \sum_{n}\left(\int_{P_{n}}^{P_{n}^{\prime}} \omega_{i}\right)_{1 \leqslant i \leqslant g}=x
$$

Abel-Jacobi and Newton

We have a target $x \in \mathbb{C}^{g} / \Lambda$, we want

$$
\jmath\left(\sum_{n=1}^{g}\left(P_{n}^{\prime}-P_{n}\right)\right) \stackrel{\text { def }}{=} \sum_{n=1}^{g}\left(\int_{P_{n}}^{P^{\prime} n} \omega_{i}\right)_{1 \leqslant i \leqslant g}=x
$$

Fix g points $P_{1}, \cdots, P_{g} \in X_{1}(\ell N)(\mathbb{C})$, and solve for $P_{1}^{\prime}, \cdots, P_{g}^{\prime}$ by Newton iteration in \mathbb{C}^{g}.

Abel-Jacobi and Newton

We have a target $x \in \mathbb{C}^{g} / \Lambda$, we want

$$
\jmath\left(\sum_{n=1}^{g}\left(P_{n}^{\prime}-P_{n}\right)\right) \stackrel{\text { def }}{=} \sum_{n=1}^{g}\left(\int_{P_{n}}^{P^{\prime} n} \omega_{i}\right)_{1 \leqslant i \leqslant g}=x
$$

Fix g points $P_{1}, \cdots, P_{g} \in X_{1}(\ell N)(\mathbb{C})$, and solve for $P_{1}^{\prime}, \cdots, P_{g}^{\prime}$ by Newton iteration in \mathbb{C}^{g}.

Poor precision, and likely to diverge...

Abel-Jacobi and Newton

We have a target $x \in \mathbb{C}^{g} / \Lambda$, we want

$$
\jmath\left(\sum_{n=1}^{g}\left(P_{n}^{\prime(m)}-P_{n}^{(m)}\right)\right) \stackrel{\text { def }}{=} \sum_{n=1}^{g}\left(\int_{P_{n}^{(m)}}^{P_{n}^{\prime(m)}} \omega_{i}\right)_{1 \leqslant i \leqslant g}=\frac{x}{2^{m}}
$$

Fix g points $P_{1}^{(m)}, \cdots, P_{g}^{(m)} \in X_{1}(\ell N)(\mathbb{C})$, and solve for $P_{1}^{\prime(m)}, \cdots, P_{g}^{\prime(m)}$ by Newton iteration in \mathbb{C}^{g}.

Abel-Jacobi and Newton

We have a target $x \in \mathbb{C}^{g} / \Lambda$, we want

$$
\jmath\left(\sum_{n=1}^{g}\left(P_{n}^{\prime(m)}-P_{n}^{(m)}\right)\right) \stackrel{\text { def }}{=} \sum_{n=1}^{g}\left(\int_{P_{n}^{(m)}}^{P_{n}^{\prime(m)}} \omega_{i}\right)_{1 \leqslant i \leqslant g}=\frac{x}{2^{m}}
$$

Fix g points $P_{1}^{(m)}, \cdots, P_{g}^{(m)} \in X_{1}(\ell N)(\mathbb{C})$, and solve for $P_{1}^{\prime(m)}, \cdots, P_{g}^{\prime(m)}$ by Newton iteration in \mathbb{C}^{g}.

Proposition (Inverse function theorem)

If $m \gg 0$, then for generic $P_{1}^{(m)}, \cdots, P_{1}^{(m)}$, then Newton converges to a solution with $P_{i}^{\prime(m)}$ close to $P_{i}^{(m)}, 1 \leqslant i \leqslant g$.

Recovering ℓ-torsion divisors

$$
[D]=2^{m}\left[D^{(m)}\right]=\left[\sum_{n=1}^{g} 2^{m}\left(P_{n}^{\prime}-P_{n}\right)\right] \in J_{1}(\ell N)[\ell] .
$$

\rightsquigarrow Use Makdisi's algorithms to double $\left[D^{(m)}\right]$ repeatedly.

Step 3

\checkmark Period lattice Λ of $X_{1}(\ell N)$
High accuracy q-expansions, term-by-term integration
\rightsquigarrow analytic model of $J_{1}(\ell N)$
\checkmark Approximation over \mathbb{C} of the ℓ-torsion
Computation of divisors $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{1}(\ell N)\right)$ representing a basis of
$V_{f, l} \subset J_{1}(\ell N)$

- Evaluation of the ℓ-torsion

Choice of a "well-behaved" function $\alpha: V_{f, \mathfrak{l}} \longrightarrow \overline{\mathbb{Q}}$
\rightsquigarrow number field L cut out by $\rho_{f, l}$

Frobenius elements

Recipe to compute the image of the Frobenius at p, given $p \nmid \ell N$

Evaluating the ℓ-torsion

We have computed divisors D_{1} and D_{2} representing a basis of $V_{f, l} \subset J_{1}(\ell N)[\ell]$.

Evaluating the ℓ-torsion

We have computed divisors D_{1} and D_{2} representing a basis of $V_{f, r} \subset J_{1}(\ell N)[\ell]$.

Thanks to Makdisi's algorithms, we compute $\mathbb{F}_{\ell^{-}}$-linear combinations of D_{1} and D_{2} \rightsquigarrow divisors representing all the ℓ^{2} points of $V_{f, \mathfrak{l}}$.

Evaluating the ℓ-torsion

We have computed divisors D_{1} and D_{2} representing a basis of $V_{f, l} \subset J_{1}(\ell N)[\ell]$.

Thanks to Makdisi's algorithms, we compute \mathbb{F}_{ℓ}-linear combinations of D_{1} and D_{2} \rightsquigarrow divisors representing all the ℓ^{2} points of $V_{f, l}$.

Proposition

Let $\alpha \in \mathbb{Q}\left(J_{1}(\ell N)\right)$, and let

$$
F(x)=\prod_{\substack{D \in V_{f, l} \\ D \neq 0}}(x-\alpha(D))
$$

Then $F(x) \in \mathbb{Q}[x]$.
For generic $\alpha, F(x)$ is irreducible, and its decomposition field is

$$
L=\overline{\mathbb{Q}}^{\operatorname{Ker} \rho f, \mathrm{I}} .
$$

Classical choice of $\alpha \in \mathbb{Q}\left(J_{1}(\ell N)\right)$

Pick $\xi \in \mathbb{Q}\left(X_{1}(\ell N)\right)$, and extend it to $J_{1}(\ell N)$ by

$$
\alpha: \begin{array}{ccc}
J_{1}(\ell N) & \cdots & \mathbb{C} \\
\sum_{i=1}^{g} P_{i}-g O & \longmapsto & \sum_{i=1}^{g} \xi\left(P_{i}\right) .
\end{array}
$$

Classical choice of $\alpha \in \mathbb{Q}\left(J_{1}(\ell N)\right)$

Pick $\xi \in \mathbb{Q}\left(X_{1}(\ell N)\right)$, and extend it to $J_{1}(\ell N)$ by

$$
\begin{array}{llll}
\alpha: & J_{1}(\ell N) & \cdots & \mathbb{C} \\
& \sum_{i=1}^{g} P_{i}-g O & \longmapsto & \sum_{i=1}^{g} \xi\left(P_{i}\right) .
\end{array}
$$

The divisor of poles of α is

$$
(\alpha)_{\infty}=\sum_{Q \text { pole of } \xi} \tau_{[Q-O]}^{*} \Theta,
$$

so ξ must be chosen with degree as small as possible.

Classical choice of $\alpha \in \mathbb{Q}\left(J_{1}(\ell N)\right)$

Pick $\xi \in \mathbb{Q}\left(X_{1}(\ell N)\right)$, and extend it to $J_{1}(\ell N)$ by

$$
\alpha: \begin{array}{ccc}
J_{1}(\ell N) & \cdots & \mathbb{C} \\
& \sum_{i=1}^{g} P_{i}-g O & \longmapsto
\end{array} \sum_{i=1}^{g} \xi\left(P_{i}\right) .
$$

The divisor of poles of α is

$$
(\alpha)_{\infty}=\sum_{Q \text { pole of } \xi} \tau_{[Q-o]}^{*} \Theta,
$$

so ξ must be chosen with degree as small as possible. Unfortunately,

Theorem (Abramovich, 1996)

$$
\operatorname{deg} \xi \gtrsim g .
$$

Better choice of $\alpha \in \mathbb{Q}\left(J_{1}(\ell N)\right)$

Points on $J_{1}(\ell N)$ can be written $E-g O, E \geqslant 0$ of degree g.
Fix an effective divisor B of degree $2 g$. Then

$$
H^{0}(B-E)=\mathbb{C} \phi_{E}
$$

We can thus define

$$
\begin{array}{rlcc}
\alpha: \quad J_{1}(\ell N) & \cdots & \mathbb{C} \\
E-g O & \longmapsto & \frac{\phi_{E}(P)}{\phi_{E}(Q)}
\end{array}
$$

where $P, Q \in X_{1}(\ell N)(\mathbb{Q})$ are fixed.

Better choice of $\alpha \in \mathbb{Q}\left(J_{1}(\ell N)\right)$

$$
H^{0}(B-E)=\mathbb{C} \phi_{E} .
$$

We can thus define

$$
\begin{array}{llll}
\alpha: \quad J_{1}(\ell N) & \cdots & \mathbb{C} \\
E-g O & \longmapsto \frac{\phi_{E}(P)}{\phi_{E}(Q)}
\end{array}
$$

where $P, Q \in X_{1}(\ell N)(\mathbb{Q})$ are fixed.

Proposition (M., 2012)

The divisor of poles of α is the sum of only 2 translates of Θ.

Step 4

\checkmark Period lattice Λ of $X_{1}(\ell N)$
High accuracy q-expansions, term-by-term integration
\rightsquigarrow analytic model of $J_{1}(\ell N)$
\checkmark Approximation over \mathbb{C} of the ℓ-torsion
Computation of divisors $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{1}(\ell N)\right)$ representing a basis of
$V_{f, l} \subset J_{1}(\ell N)$
\checkmark Evaluation of the ℓ-torsion
Choice of a "well-behaved" function $\alpha: V_{f, t} \longrightarrow \overline{\mathbb{Q}}$
\rightsquigarrow number field L cut out by $\rho_{f, r}$

- Frobenius elements

Recipe to compute the image of the Frobenius at p, given $p \nmid \ell N$

Summary

We have computed $F(x) \in \mathbb{Q}[x]$ with decomposition field $L=\overline{\mathbb{Q}}^{\text {Ker } \rho f, 1}$. We know the roots of $F(x)$ in \mathbb{C} with high accuracy, and the permutation action of $\operatorname{Gal}(L / \mathbb{Q}) \subseteq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ on them as well.

Summary

We have computed $F(x) \in \mathbb{Q}[x]$ with decomposition field $L=\overline{\mathbb{Q}}^{\text {Ker } \rho f, 1}$. We know the roots of $F(x)$ in \mathbb{C} with high accuracy, and the permutation action of $\operatorname{Gal}(L / \mathbb{Q}) \subseteq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ on them as well.

We must now compute

$$
\rho_{f, l}\left(\text { Frob }_{p}\right)
$$

for prime $p \in \mathbb{N}$.

Summary

We have computed $F(x) \in \mathbb{Q}[x]$ with decomposition field $L=\overline{\mathbb{Q}}^{\text {Ker } \rho f, 1}$. We know the roots of $F(x)$ in \mathbb{C} with high accuracy, and the permutation action of $\operatorname{Gal}(L / \mathbb{Q}) \subseteq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ on them as well.

We must now compute

$$
\rho_{f, l}\left(\text { Frob }_{p}\right)
$$

for prime $p \in \mathbb{N}$.

$$
f=q+\sum_{n \geqslant 2} a_{n} q^{n}, \quad \operatorname{Tr} \rho_{f, l}\left(\operatorname{Frob}_{p}\right)=a_{p} \bmod \mathfrak{l} .
$$

The Dokchitsers' resolvents

> Theorem (T. \& V. Dokchitser, 2010)
> Let $F(x) \in \mathbb{Q}[x]$ be irreducible, $n=\operatorname{deg} F(x), L \subset \mathbb{C}$ its decomposition field, and $a_{i} \in \mathbb{C}$ its roots.

The Dokchitsers' resolvents

Theorem (T. \& V. Dokchitser, 2010)

Let $F(x) \in \mathbb{Q}[x]$ be irreducible, $n=\operatorname{deg} F(x), L \subset \mathbb{C}$ its decomposition field, and $a_{i} \in \mathbb{C}$ its roots.

For almost all $h(x) \in \mathbb{Z}[x]_{n-1}$, the resolvents

$$
\Gamma_{C}(x)=\prod_{\sigma \in C}\left(x-\sum_{i=1}^{n} h\left(a_{i}\right) \sigma\left(a_{i}\right)\right) \in \mathbb{Q}[x]
$$

C conjugacy class of $\operatorname{Gal}(L / \mathbb{Q})$, are pairwise coprime.

The Dokchitsers' resolvents

Theorem (T. \& V. Dokchitser, 2010)

For almost all $h(x) \in \mathbb{Z}[x]_{n-1}$, the resolvents

$$
\Gamma_{C}(x)=\prod_{\sigma \in C}\left(x-\sum_{i=1}^{n} h\left(a_{i}\right) \sigma\left(a_{i}\right)\right) \in \mathbb{Q}[x],
$$

C conjugacy class of $\operatorname{Gal}(L / \mathbb{Q})$, are pairwise coprime.
For each prime $p \in \mathbb{N}$ such that $F(x)$ is defined and squarefree $\bmod p$, let

$$
\mathbb{F}_{p}[a]=\mathbb{F}_{p}[x] /(F(x) \bmod p), \quad u=\operatorname{Tr}_{\mathbb{F}_{p}[a] / \mathbb{F}_{p}} h(a) a^{p} \in \mathbb{F}_{p} .
$$

The Dokchitsers' resolvents

Theorem (T. \& V. Dokchitser, 2010)

For almost all $h(x) \in \mathbb{Z}[x]_{n-1}$, the resolvents

$$
\Gamma_{C}(x)=\prod_{\sigma \in C}\left(x-\sum_{i=1}^{n} h\left(a_{i}\right) \sigma\left(a_{i}\right)\right) \in \mathbb{Q}[x],
$$

C conjugacy class of $\operatorname{Gal}(L / \mathbb{Q})$, are pairwise coprime.
For each prime $p \in \mathbb{N}$ such that $F(x)$ is defined and squarefree $\bmod p$, let

$$
\mathbb{F}_{p}[a]=\mathbb{F}_{p}[x] /(F(x) \bmod p), \quad u=\operatorname{Tr}_{\mathbb{F}_{p}[a] / \mathbb{F}_{p}} h(a) a^{p} \in \mathbb{F}_{p} .
$$

Then $\operatorname{Frob}_{p} \in C \Longrightarrow \Gamma_{C}(u)=0 \bmod p$.

$F(x)$ is HUGE

Problem

The degree of $F(x)$ is large $\left(\approx \ell^{2}\right)$, and its coefficients are huge, so the coefficients of $\Gamma_{C}(x)$ are huge ${ }^{\ell^{2}}$.

There are algorithms to reduce a polynomial, that is to say compute another polynomial defining the same number field. But $F(x)$ is simply too big for them.

The projective representation

Instead, we could consider the projective representation

$$
\rho^{\text {proj }}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \xrightarrow{\rho_{f, 1}} \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) \longrightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right) .
$$

The projective representation

Instead, we could consider the projective representation

$$
\rho^{\text {proj }}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \xrightarrow{\rho_{f, 1}} \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) \longrightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right) .
$$

This corresponds to

$$
F^{\text {proj }}(x)=\prod_{w \in \mathbb{P}^{1} \mathbb{F}_{\ell}}\left(x-\sum_{\substack{D \in w \\ D \neq 0}} \alpha(D)\right) \in \mathbb{Q}[X]
$$

which is of degree $\ell+1$ only, and can thus be reduced.

Quotient representations

More generally, for $S \leqslant \mathbb{F}_{\ell}^{*}$ embedded diagonally into $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$, we can consider

$$
\rho^{s}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \xrightarrow{\rho_{f, 1}} \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S .
$$

Quotient representations

More generally, for $S \leqslant \mathbb{F}_{\ell}^{*}$ embedded diagonally into $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$, we can consider

$$
\rho^{s}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \xrightarrow{\rho_{f, \mathrm{I}}} \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S .
$$

Fact

Let $A \in \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ such that we know its image in $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S$ and $\operatorname{det} A$. If $-1 \notin S$, we can recover A.

Quotient representations

More generally, for $S \leqslant \mathbb{F}_{\ell}^{*}$ embedded diagonally into $G L_{2}\left(\mathbb{F}_{\ell}\right)$, we can consider

$$
\rho^{s}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \xrightarrow{\rho_{f, 1}} \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S .
$$

Fact

Let $A \in \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ such that we know its image in $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S$ and $\operatorname{det} A$. If $-1 \notin S$, we can recover A.

As $\operatorname{det} \rho_{f, \mathrm{l}}=\varepsilon \chi_{\ell}^{k-1}$ is known, we consider

$$
\mathbb{F}_{\ell}^{*}=S_{0}>S_{2} S_{2} \cdots \underset{2}{>} S_{r} \not \supset-1,
$$

where $r=\operatorname{ord}_{2}(\ell-1)$, and the associated $F_{i}(x):=F^{S_{i}}(x)$.

Quotient representations

More generally, for $S \leqslant \mathbb{F}_{\ell}^{*}$ embedded diagonally into $G L_{2}\left(\mathbb{F}_{\ell}\right)$, we can consider

$$
\rho^{s}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \xrightarrow{\rho_{f, 1}} \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S .
$$

Fact

Let $A \in \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ such that we know its image in $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S$ and $\operatorname{det} A$. If $-1 \notin S$, we can recover A.

As $\operatorname{det} \rho_{f, \mathrm{l}}=\varepsilon \chi_{\ell}^{k-1}$ is known, we consider

$$
\mathbb{F}_{\ell}^{*}=S_{0}>S_{2} \underset{2}{>} \cdots \underset{2}{>} S_{r} \not \supset-1,
$$

where $r=\operatorname{ord}_{2}(\ell-1)$, and the associated $F_{i}(x):=F^{S_{i}}(x)$.
We now focus on $F_{r}(x)$ instead of $F(x)$.

Reduction of the polynomials

First, we can reduce $F_{0}(x)$, whose degree is only $\ell+1$.

Reduction of the polynomials

First, we can reduce $F_{0}(x)$, whose degree is only $\ell+1$.
Then, we write $K_{i}=\mathbb{Q}[x] / F_{i}(x)$, so that

$$
K_{i+1}=K_{i}\left(\sqrt{\Delta_{i}}\right), \quad \Delta_{i} \in K_{i} .
$$

We can inductively reduce the $F_{i}(x)$, by writing $\Delta_{i}=A_{i}^{2} \delta_{i}$ in K_{i} with δ_{i} small.

The fields

The filtration

$$
\mathbb{F}_{\ell}^{*}=S_{0} \not \underset{2}{\supsetneq} S_{1} \not \underset{2}{\supsetneq} \cdots \nsupseteq \frac{\supsetneq}{2} S_{r}=S \not \supset-1
$$

yields a tower of quadratic extensions

$$
L_{0} \underset{\frac{1}{2}}{\subsetneq} L_{1} \underset{2}{\subsetneq} \cdots \underset{\frac{1}{2}}{\subsetneq} L_{r},
$$

where $L_{i}=\overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f, \mathrm{~L}}}$.

The fields

The filtration

$$
\mathbb{F}_{\ell}^{*}=S_{0} \not \underset{2}{\supsetneq} S_{1} \not \underset{2}{\supsetneq} \cdots \nsupseteq S_{r}=S \not \supset-1
$$

yields a tower of quadratic extensions

$$
L_{0} \underset{2}{\subsetneq} L_{1} \subsetneq \underset{2}{\subsetneq} \cdots \underset{2}{\subsetneq} L_{r},
$$

where $L_{i}=\overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f, \mathrm{I}}^{S_{i}}}$.

Proposition

$$
L=L_{r} \underbrace{L_{\operatorname{det} \rho_{f, l}}}_{\subseteq \mathbb{Q}\left(\zeta_{M}\right)} .
$$

Certification of the output

Certification

We have identified the coefficients of

$$
F(x)=\prod_{\substack{D \in V_{f, 1} \\ D \neq 0}}(x-\alpha(D)) \in \mathbb{Q}[x]
$$

beyond reasonable doubt, but this is not rigorous.

Certification

We have identified the coefficients of

$$
F(x)=\prod_{\substack{D \in V_{f, 1} \\ D \neq 0}}(x-\alpha(D)) \in \mathbb{Q}[x]
$$

beyond reasonable doubt, but this is not rigorous.

Question

How do we certify that $F(x)$ defines $\rho_{f, l}$?

Certification

We have identified the coefficients of

$$
F(x)=\prod_{\substack{D \in V_{f, 1} \\ D \neq 0}}(x-\alpha(D)) \in \mathbb{Q}[x]
$$

beyond reasonable doubt, but this is not rigorous.

Question

How do we certify that $F(x)$ defines $\rho_{f, l}$?
For simplicity, we will assume that f and \mathfrak{l} are such that $\ell \geqslant 5$, $N=1$, and that $\operatorname{Im} \rho_{f, \mathfrak{l}}=\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.

Certification

We have identified the coefficients of

$$
F(x)=\prod_{\substack{D \in V_{f, 1} \\ D \neq 0}}(x-\alpha(D)) \in \mathbb{Q}[x]
$$

beyond reasonable doubt, but this is not rigorous.

Question

How do we certify that $F(x)$ defines $\rho_{f, l}$?
For simplicity, we will assume that f and \mathfrak{l} are such that $\ell \geqslant 5$, $N=1$, and that $\operatorname{lm} \rho_{f, \mathfrak{l}}=\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.

We must prove that
(1) $\mathrm{Gal}_{\mathbb{Q}}(F) \circlearrowleft\{\alpha(D)\}$ is permutation-isomorphic to $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) \circlearrowleft \mathbb{F}_{\ell}^{2}-\{0\}$,
(2) the corresponding Galois representation ϱ is $\rho_{f, l}$.

Certification

We have identified the coefficients of

$$
F(x)=\prod_{\substack{D \in V_{f, l} \\ D \neq 0}}(x-\alpha(D)) \in \mathbb{Q}[x]
$$

beyond reasonable doubt, but this is not rigorous.

Question

How do we certify that $F(x)$ defines $\rho_{f, l}$?
For simplicity, we will assume that f and \mathfrak{l} are such that $\ell \geqslant 5$, $N=1$, and that $\operatorname{lm} \rho_{f, \mathfrak{l}}=\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.
We must prove that
(1) $\mathrm{Gal}_{\mathbb{Q}}(F) \circlearrowleft\{\alpha(D)\}$ is permutation-isomorphic to $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) \circlearrowleft \mathbb{F}_{\ell}{ }^{2}-\{0\}$ \rightsquigarrow compute $\mathrm{Gal}_{\mathbb{Q}}(F)$ with Magma,
(2) the corresponding Galois representation ϱ is $\rho_{f, l}$.

Certification

We have identified the coefficients of

$$
F(x)=\prod_{\substack{D \in V_{f, 1} \\ D \neq 0}}(x-\alpha(D)) \in \mathbb{Q}[x]
$$

beyond reasonable doubt, but this is not rigorous.

Question

How do we certify that $F(x)$ defines $\rho_{f, l}$?
For simplicity, we will assume that f and \mathfrak{l} are such that $\ell \geqslant 5$, $N=1$, and that $\operatorname{lm} \rho_{f, \mathfrak{l}}=\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.
We must prove that
(1) $\mathrm{Gal}_{\mathbb{Q}}(F) \circlearrowleft\{\alpha(D)\}$ is permutation-isomorphic to $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) \circlearrowleft \mathbb{F}_{\ell}{ }^{2}-\{0\}$ \rightsquigarrow compute $\mathrm{Gal}_{\mathbb{Q}}(F)$ with Magma,
(2) the corresponding Galois representation ϱ is $\rho_{f, 1}$ \rightsquigarrow use Serre's modularity conjecture.

Serre's modularity conjecture

Theorem (Khare+Wintenberger, 2009)

Let $c \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ be the complex conjugation, and let

$$
\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)
$$

be an irreducible Galois representation such that $\operatorname{det} \rho(c)=-1$. Then there exists a newform $f \in S_{k_{\rho}}\left(\Gamma_{1}\left(N_{\rho}\right), \varepsilon_{\rho}\right)$ and a prime $\mathfrak{l} \mid \ell$ such that

$$
\rho \sim \rho_{f, \mathfrak{l}}
$$

Moreover, there are explicit recipes to compute N_{ρ}, k_{ρ} and ε_{ρ}.

Proof of the projective Galois group

Let $x, y, z, t \in \mathbb{P}^{1} \mathbb{F}_{\ell}$ be pairwise distinct. Their cross-ratio is by definition $\gamma(t)$, where $\gamma \in \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ is the only element sending (x, y, z) to $(\infty, 0,1)$.

Proof of the projective Galois group

Let $x, y, z, t \in \mathbb{P}^{1} \mathbb{F}_{\ell}$ be pairwise distinct. Their cross-ratio is by definition $\gamma(t)$, where $\gamma \in \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ is the only element sending (x, y, z) to $(\infty, 0,1)$.

Proposition

Let γ be a permutation of $\mathbb{P}^{1} \mathbb{F}_{\ell}$. Then
γ preserves cross-ratios $\Longleftrightarrow \gamma \in \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$.

Proof of the projective Galois group

Proposition

Let γ be a permutation of $\mathbb{P}^{1} \mathbb{F}_{\ell}$. Then γ preserves cross-ratios $\Longleftrightarrow \gamma \in \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$.

Let $\left(\beta_{w}=\sum_{0 \neq D \in w} \alpha(D)\right)_{w \in \mathbb{P}_{1} \mathbb{F}_{\ell}}$ be the roots of $F^{\text {proj }}(x)$, and let $\lambda_{1}, \cdots, \lambda_{4}$ be distinct integers. We compute

$$
R_{4}(x)=\prod_{\substack{w_{1}, \cdots, w_{4} \\ \text { distinct }}}\left(x-\sum_{m=1}^{4} \lambda_{m} \beta_{w_{m}}\right) \in \mathbb{Z}[x]
$$

If $R_{4}(x)$ is squarefree and factors along cross-ratios, this proves that $\mathrm{Gal}_{\mathbb{Q}}\left(F^{\text {proj }}\right) \leqslant \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$.

Proof of the projective Galois group

We can define the unordered cross-ratio map

$$
u: \begin{array}{ccc}
\binom{\mathbb{P}^{1}\left(\mathbb{F}_{\ell}\right)}{4} & \longrightarrow & \mathbb{F}_{\ell} \\
\{x, y, z, t\} & \longmapsto & \longmapsto([x, y, z, t])
\end{array},
$$

where $j(\lambda)=256 \frac{\left(1-\lambda+\lambda^{2}\right)^{3}}{\lambda^{2}(1-\lambda)^{2}}$.

Proof of the projective Galois group

We can define the unordered cross-ratio map

$$
u: \begin{array}{ccc}
\binom{\mathbb{P}^{1}\left(\mathbb{F}_{\ell}\right)}{4} & \longrightarrow & \mathbb{F}_{\ell} \\
\{x, y, z, t\} & \longmapsto & \longmapsto([x, y, z, t])
\end{array}
$$

where $j(\lambda)=256 \frac{\left(1-\lambda+\lambda^{2}\right)^{3}}{\lambda^{2}(1-\lambda)^{2}}$.

Theorem (M., 2016)

(1) $\forall \ell \geqslant 5, \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ is a maximal subgroup of $\mathfrak{S}_{\mathbb{P}^{1}\left(\mathbb{F}_{\ell}\right)}$.
(2) $\forall \ell \neq 5, \gamma \circlearrowleft \mathbb{P}^{1}\left(\mathbb{F}_{\ell}\right)$ preserves $u \Longleftrightarrow \gamma \in \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$.

Proof of the projective Galois group

Theorem (M., 2016)

(1) $\forall \ell \geqslant 5, \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ is a maximal subgroup of $\mathfrak{S}_{\mathbb{P}^{1}\left(\mathbb{F}_{\ell}\right)}$.
(2) $\forall \ell \neq 5, \gamma \circlearrowleft \mathbb{P}^{1}\left(\mathbb{F}_{\ell}\right)$ preserves $u \Longleftrightarrow \gamma \in \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$.

Instead of

$$
R_{4}(x)=\prod_{\substack{w_{1}, \cdots, w_{4} \\ \text { distinct }}}\left(x-\sum_{m=1}^{4} \nu_{m} \beta_{w_{m}}\right) \in \mathbb{Z}[x],
$$

for $\ell \neq 5$ we may use
whose degree is 24 times smaller.

Proof of the projective representation

Theorem(Projective Serre) (Moon+Taguchi 2003, Bosman 2007)

Let $\pi: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ be an irreducible projective Galois representation such that $\pi(c)$ fixes exactly two points of $\mathbb{P}^{1} \mathbb{F}_{\ell}$. If the discriminant of the field corresponding to $\pi^{-1}\left(\left[\begin{array}{c}* * \\ 0\end{array}\right]\right)$ is of the form $\pm \ell^{\ell+k-2}$ for some $k \geqslant 3$, then there exists a newform $f \in S_{k}(1)$ and a prime $\mathfrak{l} \mid \ell$ such that $\pi \sim \rho_{f, \mathfrak{l}}^{\text {proj }}$.

Proof of the projective representation

Theorem(Projective Serre) (Moon+Taguchi 2003, Bosman 2007)

Let $\pi: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ be an irreducible projective Galois representation such that $\pi(c)$ fixes exactly two points of $\mathbb{P}^{1} \mathbb{F}_{\ell}$. If the discriminant of the field corresponding to $\pi^{-1}\left(\left[\begin{array}{c}* \\ 0 \\ *\end{array}\right]\right)$ is of the form $\pm \ell^{\ell+k-2}$ for some $k \geqslant 3$, then there exists a newform $f \in S_{k}(1)$ and a prime $\mathfrak{l} \mid \ell$ such that $\pi \sim \rho_{f, l}^{\text {proj }}$.

To make sure we have the right f, we use the fact that for prime $v \nmid \operatorname{Disc}\left(F^{\text {proj }}(x)\right)$,

$$
\begin{aligned}
a_{v}(f) \equiv 0 \bmod \mathfrak{l} & \Longleftrightarrow \\
& \rho_{f, l}(\text { (Frob }) \text { is of order } 2 \\
& F^{\text {proj }}(x) \text { mod } v \text { splits into linear or } \\
& \text { quadratic factors, and is not } \\
& \text { completely split. }
\end{aligned}
$$

Switching to p-adics

Later on, we will need to work on p-adic numbers instead of complex ones.

Switching to p-adics

Later on, we will need to work on p-adic numbers instead of complex ones.

We fix a large prime $p \in \mathbb{N}$ such that the $F_{i}(x)$ are irreducible $\bmod p$, and we will work with the roots of the $F_{i}(x)$ in $\overline{\mathbb{Q}_{p}}$ from now on.

Switching to p-adics

Later on, we will need to work on p-adic numbers instead of complex ones.

We fix a large prime $p \in \mathbb{N}$ such that the $F_{i}(x)$ are irreducible $\bmod p$, and we will work with the roots of the $F_{i}(x)$ in $\overline{\mathbb{Q}_{p}}$ from now on.

Unfortunately, we have thus thrown away the indexation of the roots. We will have to recover it at some point.

The higher Galois groups

For each $i \leqslant r$, let

- $K_{i}=\mathbb{Q}[x] / F_{i}(x)$ the root field of $F_{i}(x)$,
- L_{i} be the splitting field of $F_{i}(x)$,
- Z_{i} the set of p-adic roots of $F_{i}(x)$,
- and write $V_{i}=\left(\mathbb{F}_{\ell}{ }^{2}-\{0\}\right) / S_{i}$.

The higher Galois groups

For each $i \leqslant r$, let

- $K_{i}=\mathbb{Q}[x] / F_{i}(x)$ the root field of $F_{i}(x)$,
- L_{i} be the splitting field of $F_{i}(x)$,
- Z_{i} the set of p-adic roots of $F_{i}(x)$,
- and write $V_{i}=\left(\mathbb{F}_{\ell}{ }^{2}-\{0\}\right) / S_{i}$.

We want to find a compatible system of isomorphisms $Z_{i} \simeq V_{i}$ and $\operatorname{Gal}\left(L_{i} / \mathbb{Q}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S_{i}$.

The higher Galois groups

For each $i \leqslant r$, let

- $K_{i}=\mathbb{Q}[x] / F_{i}(x)$ the root field of $F_{i}(x)$,
- L_{i} be the splitting field of $F_{i}(x)$,
- Z_{i} the set of p-adic roots of $F_{i}(x)$,
- and write $V_{i}=\left(\mathbb{F}_{\ell}{ }^{2}-\{0\}\right) / S_{i}$.

We want to find a compatible system of isomorphisms $Z_{i} \simeq V_{i}$ and $\operatorname{Gal}\left(L_{i} / \mathbb{Q}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S_{i}$.

For now, all we know is that

$$
\operatorname{Gal}\left(L_{0} / \mathbb{Q}\right) \simeq \operatorname{PGL}_{2}\left(\mathbb{F}_{\ell}\right) \circlearrowright \mathbb{P}^{1} \mathbb{F}_{\ell} .
$$

The Galois closures are not too big

We know that $K_{i+1}=K_{i}\left(\sqrt{\delta_{i}}\right)$ is quadratic over K_{i}, and that L_{i} is the Galois closure of K_{i}.

The Galois closures are not too big

We know that $K_{i+1}=K_{i}\left(\sqrt{\delta_{i}}\right)$ is quadratic over K_{i}, and that L_{i} is the Galois closure of K_{i}.

It is reasonable to assume that $K_{i}=\mathbb{Q}\left(\delta_{i}\right) \simeq \mathbb{Q}[x] / d_{i}(x)$.

The Galois closures are not too big

We know that $K_{i+1}=K_{i}\left(\sqrt{\delta_{i}}\right)$ is quadratic over K_{i}, and that L_{i} is the Galois closure of K_{i}.

It is reasonable to assume that $K_{i}=\mathbb{Q}\left(\delta_{i}\right) \simeq \mathbb{Q}[x] / d_{i}(x)$.

- We can check that L_{i+1} / L_{i} is at most quadratic, by studying how

$$
\operatorname{Res}_{y}\left(d_{i}\left(x^{2} y\right), d_{i}(y)\right)=\mathrm{Cst} . \prod_{\sigma\left(\delta_{i}\right) \neq \tau\left(\delta_{i}\right)}\left(x^{2}-\frac{\sigma\left(\delta_{i}\right)}{\tau\left(\delta_{i}\right)}\right)
$$

factors over subfields of $\mathbb{Q}\left(\mu_{\ell}\right)$.

The Galois closures are not too big

We know that $K_{i+1}=K_{i}\left(\sqrt{\delta_{i}}\right)$ is quadratic over K_{i}, and that L_{i} is the Galois closure of K_{i}.

It is reasonable to assume that $K_{i}=\mathbb{Q}\left(\delta_{i}\right) \simeq \mathbb{Q}[x] / d_{i}(x)$.

- We can check that L_{i+1} / L_{i} is at most quadratic, by studying how

$$
\operatorname{Res}_{y}\left(d_{i}\left(x^{2} y\right), d_{i}(y)\right)=\operatorname{Cst} . \prod_{\sigma\left(\delta_{i}\right) \neq \tau\left(\delta_{i}\right)}\left(x^{2}-\frac{\sigma\left(\delta_{i}\right)}{\tau\left(\delta_{i}\right)}\right)
$$

factors over subfields of $\mathbb{Q}\left(\mu_{\ell}\right)$.

- We can check that $L_{i+1} \neq L_{i}$ by finding a prime $v \in \mathbb{N}$ such that $F_{i}(x)$ splits completely mod v but $F_{i+1}(x)$ does not.

A classification theorem

Theorem (Quer, 1995)

Let $i \in \mathbb{N}$.
(1) $H^{2}\left(\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), C_{2^{i}}\right) \simeq C_{2} \times C_{2}$, so there are 4 central extensions

$$
1 \longrightarrow C_{2^{i}} \longrightarrow \tilde{G} \longrightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right) \longrightarrow 1
$$

Write the corresponding normalised cocycles as $\beta_{1}=1$, $\beta_{\text {det }}, \beta_{+}$and β_{-}, and the corresponding central extensions as $C_{2^{i}} \times \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), 2_{\text {det }}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), 2_{+}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ and $2_{-}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$.

A classification theorem

Theorem (Quer, 1995)

Let $i \in \mathbb{N}$.
(1) $H^{2}\left(\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), C_{2^{i}}\right) \simeq C_{2} \times C_{2}$, so there are 4 central extensions

$$
1 \longrightarrow C_{2^{i}} \longrightarrow \tilde{G} \longrightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right) \longrightarrow 1
$$

Write the corresponding normalised cocycles as $\beta_{1}=1$, $\beta_{\text {det }}, \beta_{+}$and β_{-}, and the corresponding central extensions as $C_{2^{i}} \times \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), 2_{\text {det }}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), 2_{+}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ and $2_{-}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$.
(2) If $i=1$, then for all $g \in \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ of order exactly 2 ,

- $\beta_{1}(g, g)=1$,
- $\beta_{\text {det }}(g, g)=1 \Longleftrightarrow g \in \operatorname{PSL}_{2}\left(\mathbb{F}_{\ell}\right)$,
- $\beta_{+}(g, g)=1 \Longleftrightarrow g \notin \mathrm{PSL}_{2}\left(\mathbb{F}_{\ell}\right)$,
- $\beta_{-}(g, g)=-1$.

A classification theorem

Theorem (Quer, 1995)

Let $i \in \mathbb{N}$.
(1) $H^{2}\left(\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), C_{2^{i}}\right) \simeq C_{2} \times C_{2}$.
(2) If $i=1$, then for all $g \in \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ of order exactly 2 ,

- $\beta_{1}(g, g)=1$,
- $\beta_{\operatorname{det}}(g, g)=1 \Longleftrightarrow g \in \operatorname{PSL}_{2}\left(\mathbb{F}_{\ell}\right)$,
- $\beta_{+}(g, g)=1 \Longleftrightarrow g \notin \operatorname{PSL}_{2}\left(\mathbb{F}_{\ell}\right)$,
- $\beta_{-}(g, g)=-1$.
(3) If $i \geqslant 2$,

$$
\begin{aligned}
& \text { - }\left(C_{2^{i}} \times \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)\right)^{\mathrm{ab}} \simeq C_{2^{i}} \times C_{2}, \\
& \text { - }\left(2_{\text {det }}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)\right)^{\mathrm{ab}} \simeq C_{2^{i+1},}, \\
& \text { - }\left(2_{+}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)\right)^{\mathrm{ab}} \simeq C_{2^{i},} \\
& \text { - }\left(2_{-}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)\right)^{\mathrm{ab}} \simeq C_{2^{i-1}} \times C_{2} .
\end{aligned}
$$

A classification theorem

Theorem (Quer, 1995)

Let $i \in \mathbb{N}$.
(1) $H^{2}\left(\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), C_{2^{i}}\right) \simeq C_{2} \times C_{2}$, so there are 4 central extensions

$$
1 \longrightarrow C_{2^{i}} \longrightarrow \tilde{G} \longrightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right) \longrightarrow 1
$$

Write the corresponding normalised cocycles as $\beta_{1}=1$, $\beta_{\text {det }}, \beta_{+}$and β_{-}, and the corresponding central extensions as $C_{2^{i}} \times \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), 2_{\text {det }}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), 2_{+}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ and $2_{-}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$.

A classification theorem

Theorem (Quer, 1995)

Let $i \in \mathbb{N}$.
(1) $H^{2}\left(\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), C_{2^{i}}\right) \simeq C_{2} \times C_{2}$, so there are 4 central extensions

$$
1 \longrightarrow C_{2^{i}} \longrightarrow \tilde{G} \longrightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right) \longrightarrow 1
$$

Write the corresponding normalised cocycles as $\beta_{1}=1$, $\beta_{\text {det }}, \beta_{+}$and β_{-}, and the corresponding central extensions as $C_{2^{i}} \times \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), 2_{\text {det }}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), 2_{+}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ and $2_{-}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$.
(2) If $i=1$, then for all $g \in \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ of order exactly 2 ,

- $\beta_{1}(g, g)=1$,
- $\beta_{\text {det }}(g, g)=1 \Longleftrightarrow g \in \operatorname{PSL}_{2}\left(\mathbb{F}_{\ell}\right)$,
- $\beta_{+}(g, g)=1 \Longleftrightarrow g \notin \mathrm{PSL}_{2}\left(\mathbb{F}_{\ell}\right)$,
- $\beta_{-}(g, g)=-1$.

A classification theorem

Theorem (Quer, 1995)

Let $i \in \mathbb{N}$.
(1) $H^{2}\left(\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), C_{2^{i}}\right) \simeq C_{2} \times C_{2}$.
(2) If $i=1$, then for all $g \in \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ of order exactly 2 ,

- $\beta_{1}(g, g)=1$,
- $\beta_{\operatorname{det}}(g, g)=1 \Longleftrightarrow g \in \operatorname{PSL}_{2}\left(\mathbb{F}_{\ell}\right)$,
- $\beta_{+}(g, g)=1 \Longleftrightarrow g \notin \operatorname{PSL}_{2}\left(\mathbb{F}_{\ell}\right)$,
- $\beta_{-}(g, g)=-1$.
(3) If $i \geqslant 2$,

$$
\begin{aligned}
& \text { - }\left(C_{2^{i}} \times \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)\right)^{\mathrm{ab}} \simeq C_{2^{i}} \times C_{2}, \\
& \text { - }\left(2_{\text {det }}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)\right)^{\mathrm{ab}} \simeq C_{2^{i+1},}, \\
& \text { - }\left(2_{+}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)\right)^{\mathrm{ab}} \simeq C_{2^{i},} \\
& \text { - }\left(2_{-}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)\right)^{\mathrm{ab}} \simeq C_{2^{i-1}} \times C_{2} .
\end{aligned}
$$

$\operatorname{Gal}\left(L_{1} / \mathbb{Q}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / \mathbb{F}_{\ell}^{* 2}$

Lemma

Let $1 \longrightarrow C_{2} \longrightarrow \tilde{G} \longrightarrow G \longrightarrow 1$ be an extension with normalised cocycle $\beta \in H^{2}\left(G, C_{2}\right)$, and let $g \in G$ of order 2 . Then the lifts of g have order 2 if $\beta(g, g)=1$, and order 4 else.

$\operatorname{Gal}\left(L_{1} / \mathbb{Q}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / \mathbb{F}_{\ell}^{* 2}$

Lemma

Let $1 \longrightarrow C_{2} \longrightarrow \tilde{G} \longrightarrow G \longrightarrow 1$ be an extension with normalised cocycle $\beta \in H^{2}\left(G, C_{2}\right)$, and let $g \in G$ of order 2 . Then the lifts of g have order 2 if $\beta(g, g)=1$, and order 4 else.

Thanks to the complex conjugation, we deduce that

$$
\operatorname{Gal}\left(L_{1} / \mathbb{Q}\right) \simeq \begin{cases}2_{\operatorname{det}} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), & \ell \equiv 1 \bmod 4 \\ 2_{+} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), & \ell \equiv-1 \bmod 4\end{cases}
$$

$\operatorname{Gal}\left(L_{1} / \mathbb{Q}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / \mathbb{F}_{\ell}^{* 2}$

Lemma

Let $1 \longrightarrow C_{2} \longrightarrow \tilde{G} \longrightarrow G \longrightarrow 1$ be an extension with normalised cocycle $\beta \in H^{2}\left(G, C_{2}\right)$, and let $g \in G$ of order 2 . Then the lifts of g have order 2 if $\beta(g, g)=1$, and order 4 else.

Thanks to the complex conjugation, we deduce that

$$
\operatorname{Gal}\left(L_{1} / \mathbb{Q}\right) \simeq \begin{cases}2_{\operatorname{det}} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), & \ell \equiv 1 \bmod 4 \\ 2_{+} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), & \ell \equiv-1 \bmod 4\end{cases}
$$

and that the same goes for $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / \mathbb{F}_{\ell}^{* 2}$.

$\operatorname{Gal}\left(L_{1} / \mathbb{Q}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / \mathbb{F}_{\ell}^{* 2}$

Lemma

Let $1 \longrightarrow C_{2} \longrightarrow \tilde{G} \longrightarrow G \longrightarrow 1$ be an extension with normalised cocycle $\beta \in H^{2}\left(G, C_{2}\right)$, and let $g \in G$ of order 2 . Then the lifts of g have order 2 if $\beta(g, g)=1$, and order 4 else.

$\operatorname{Gal}\left(L_{1} / \mathbb{Q}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / \mathbb{F}_{\ell}^{* 2}$

Lemma

Let $1 \longrightarrow C_{2} \longrightarrow \tilde{G} \longrightarrow G \longrightarrow 1$ be an extension with normalised cocycle $\beta \in H^{2}\left(G, C_{2}\right)$, and let $g \in G$ of order 2 . Then the lifts of g have order 2 if $\beta(g, g)=1$, and order 4 else.

Thanks to the complex conjugation, we deduce that

$$
\operatorname{Gal}\left(L_{1} / \mathbb{Q}\right) \simeq \begin{cases}2_{\operatorname{det}} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), & \ell \equiv 1 \bmod 4 \\ 2_{+} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), & \ell \equiv-1 \bmod 4\end{cases}
$$

$\operatorname{Gal}\left(L_{1} / \mathbb{Q}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / \mathbb{F}_{\ell}^{* 2}$

Lemma

Let $1 \longrightarrow C_{2} \longrightarrow \tilde{G} \longrightarrow G \longrightarrow 1$ be an extension with normalised cocycle $\beta \in H^{2}\left(G, C_{2}\right)$, and let $g \in G$ of order 2 . Then the lifts of g have order 2 if $\beta(g, g)=1$, and order 4 else.

Thanks to the complex conjugation, we deduce that

$$
\operatorname{Gal}\left(L_{1} / \mathbb{Q}\right) \simeq \begin{cases}2_{\operatorname{det}} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), & \ell \equiv 1 \bmod 4 \\ 2_{+} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), & \ell \equiv-1 \bmod 4\end{cases}
$$

and that the same goes for $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / \mathbb{F}_{\ell}^{* 2}$.

Going up and down

Since $r=1$ when $\ell \equiv-1 \bmod 4$, we now assume $\ell \equiv 1 \bmod 4$.

Going up and down

Since $r=1$ when $\ell \equiv-1 \bmod 4$, we now assume $\ell \equiv 1 \bmod 4$.
$\operatorname{Gal}\left(L_{i} / \mathbb{Q}\right)$ is an extension of $\operatorname{Gal}\left(L_{i-1} / \mathbb{Q}\right)$ by C_{2}. We prove by induction on i that it is an extension of $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ by $C_{2^{i}}$, and that this extension is central.

Going up and down

Since $r=1$ when $\ell \equiv-1 \bmod 4$, we now assume $\ell \equiv 1 \bmod 4$.
$\operatorname{Gal}\left(L_{i} / \mathbb{Q}\right)$ is an extension of $\operatorname{Gal}\left(L_{i-1} / \mathbb{Q}\right)$ by C_{2}. We prove by induction on i that it is an extension of $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ by $C_{2^{i}}$, and that this extension is central.

We deduce from the abelianisations that

$$
\operatorname{Gal}\left(L_{r} / \mathbb{Q}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S_{r} .
$$

Going up and down

Since $r=1$ when $\ell \equiv-1 \bmod 4$, we now assume $\ell \equiv 1 \bmod 4$.
$\operatorname{Gal}\left(L_{i} / \mathbb{Q}\right)$ is an extension of $\operatorname{Gal}\left(L_{i-1} / \mathbb{Q}\right)$ by C_{2}. We prove by induction on i that it is an extension of $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ by $C_{2^{i}}$, and that this extension is central.

We deduce from the abelianisations that

$$
\operatorname{Gal}\left(L_{r} / \mathbb{Q}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S_{r}
$$

More generally, we see that

$$
\operatorname{Gal}\left(L_{i} / \mathbb{Q}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S_{i} \simeq \begin{cases}\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), & i=0, \\ 2_{\mathrm{del}}^{2} \mathrm{PGL} L_{2}\left(\mathbb{F}_{\ell}\right), & 0<i<r, \\ 2_{+}^{i} \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right), & i=r .\end{cases}
$$

The action of Galois

We now know that $\operatorname{Gal}\left(L_{i} / \mathbb{Q}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S_{i}$ as an abstract group, so we get Galois representations ϱ_{i}.

But is its action on the roots of $F_{i}(x)$ equivalent to $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S_{i} \circlearrowleft V_{i}$?

The action of Galois

We now know that $\operatorname{Gal}\left(L_{i} / \mathbb{Q}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S_{i}$ as an abstract group, so we get Galois representations ϱ_{i}.

But is its action on the roots of $F_{i}(x)$ equivalent to $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S_{i} \circlearrowleft V_{i}$?

By construction, the image of the stabilizer of a root of $F_{1}(x)$ is conjugate to a subgroup of index 2 of $\left[\begin{array}{c}* \\ 0\end{array}\right]<\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / \mathbb{F}_{\ell}^{* 2}$.

The action of Galois

We now know that $\operatorname{Gal}\left(L_{i} / \mathbb{Q}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S_{i}$ as an abstract group, so we get Galois representations ϱ_{i}.

But is its action on the roots of $F_{i}(x)$ equivalent to $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S_{i} \circlearrowleft V_{i}$?

By construction, the image of the stabilizer of a root of $F_{1}(x)$ is conjugate to a subgroup of index 2 of $\left[\begin{array}{c}* \\ 0\end{array}\right]<\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / \mathbb{F}_{\ell}^{* 2}$.

So it must be either

- $H_{\uparrow}=\left\{\left.\left[\begin{array}{cc}x & * \\ 0 & *\end{array}\right] \right\rvert\, x \in \mathbb{F}_{\ell}^{* 2}\right\}$, or
- $H_{\downarrow}=\left\{\left.\left[\begin{array}{ll}* & * \\ 0 & y\end{array}\right] \right\rvert\, y \in \mathbb{F}_{\ell}^{* 2}\right\}$, or
- $H_{\uparrow}=\left\{\left.\left[\begin{array}{ll}x & * \\ 0 & y\end{array}\right] \right\rvert\, x y \in \mathbb{F}_{\ell}^{* 2}\right\}$.

The action of Galois

By construction, the image of the stabilizer of a root of $F_{1}(x)$ is conjugate to a subgroup of index 2 of $\left[\begin{array}{c}* \\ 0 \\ 0\end{array}\right]<\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / \mathbb{F}_{\ell}^{* 2}$.

So it must be either

- $H_{\uparrow}=\left\{\left.\left[\begin{array}{cc}x \\ 0 & * \\ 0\end{array}\right] \right\rvert\, x \in \mathbb{F}_{\ell}^{* 2}\right\}$, or
- $H_{\downarrow}=\left\{\left.\left[\begin{array}{c}0_{0}^{*} \\ \underset{y}{*}\end{array}\right] \right\rvert\, y \in \mathbb{F}_{\ell}^{* 2}\right\}$, or
- $H_{\hat{\imath}}=\left\{\left.\left[\begin{array}{ll}x \\ 0 & y\end{array}\right] \right\rvert\, x y \in \mathbb{F}_{\ell}^{* 2}\right\}$.

But

$$
\bigcap_{g} g H_{\uparrow} g^{-1} \ni\left[\begin{array}{cc}
\epsilon & 0 \\
0 & \epsilon
\end{array}\right] \neq 1
$$

for $\epsilon \notin \mathbb{F}_{\ell}^{* 2}$, so H_{\uparrow} corresponds to a non-faithful action of $G L_{2}\left(\mathbb{F}_{\ell}\right) / \mathbb{F}_{\ell}^{* 2}$.

The action of Galois

By construction, the image of the stabilizer of a root of $F_{1}(x)$ is conjugate to a subgroup of index 2 of $\left[\begin{array}{c}* * \\ 0\end{array}\right]<\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / \mathbb{F}_{\ell}^{* 2}$.

So it must be either

- $H_{\uparrow}=\left\{\left.\left[\begin{array}{c}x \\ 0 \\ 0\end{array}\right] \right\rvert\, x \in \mathbb{F}_{\ell}^{* 2}\right\}$, or
- $H_{\downarrow}=\left\{\left.\left[\begin{array}{c}* \\ 0 \\ { }_{y}^{*}\end{array}\right] \right\rvert\, y \in \mathbb{F}_{\ell}^{* 2}\right\}$, or
- $H_{\hat{\imath}}=\left\{\left.\left[\begin{array}{ll}x & * \\ 0 & y\end{array}\right] \right\rvert\, x y \in \mathbb{F}_{\ell}^{* 2}\right\}$.
H_{\uparrow} corresponds to a non-faithful action of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / \mathbb{F}_{\ell}^{* 2}$.
After twisting by the automorphism $A \mapsto \frac{1}{\operatorname{det} A} A$ which swaps H_{\uparrow} and H_{\downarrow}, we can suppose that the stabilizer is H_{\uparrow}.

Are the representations correct?

Now we know that

$$
\operatorname{Gal}\left(F_{i}\right)=\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S_{i}
$$

in a compatible way, we get a compatible collection of representations

$$
\varrho_{i}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S_{i}
$$

We want to show that

$$
\rho_{r} \sim \rho_{f, \mathfrak{l}}^{S_{r}}
$$

Recovering the indexation of the roots

We can index the p-adic roots of $F_{0}(x)$ by $\mathbb{P}^{1} \mathbb{F}_{\ell}$ thanks to our Galois group computation, and then compute

$$
\varrho_{0}\left(\operatorname{Frob}_{p}\right)=\bar{\Phi} \in \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)
$$

by looking at Frob_{p} acting on them.

Recovering the indexation of the roots

We can index the p-adic roots of $F_{0}(x)$ by $\mathbb{P}^{1} \mathbb{F}_{\ell}$ thanks to our Galois group computation, and then compute

$$
\varrho_{0}\left(\operatorname{Frob}_{p}\right)=\bar{\Phi} \in \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)
$$

by looking at Frob_{p} acting on them.
So $\varrho_{r}\left(\mathrm{Frob}_{p}\right)=\lambda \Phi \in \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S_{r}$ for some unknown $\lambda \in \mathbb{F}_{\ell}^{*} / S_{r}$.

Recovering the indexation of the roots

We can index the p-adic roots of $F_{0}(x)$ by $\mathbb{P}^{1} \mathbb{F}_{\ell}$ thanks to our Galois group computation, and then compute

$$
\varrho_{0}\left(\operatorname{Frob}_{p}\right)=\bar{\Phi} \in \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)
$$

by looking at Frob_{p} acting on them.
So $\varrho_{r}\left(\mathrm{Frob}_{p}\right)=\lambda \Phi \in \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S_{r}$ for some unknown $\lambda \in \mathbb{F}_{\ell}^{*} / S_{r}$.

Let $z \in Z_{r}$ be a root of $F_{r}(x)$. We find the corresponding root of $F_{0}(x)$, then the line $w \in \mathbb{P}^{1} \mathbb{F}_{\ell}$ that indexes it, and we index z by a vector $v \in w$.

Recovering the indexation of the roots

We can index the p-adic roots of $F_{0}(x)$ by $\mathbb{P}^{1} \mathbb{F}_{\ell}$ thanks to our Galois group computation, and then compute

$$
\varrho_{0}\left(\operatorname{Frob}_{p}\right)=\bar{\Phi} \in \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)
$$

by looking at Frob_{p} acting on them.
So $\varrho_{r}\left(\mathrm{Frob}_{p}\right)=\lambda \Phi \in \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S_{r}$ for some unknown $\lambda \in \mathbb{F}_{\ell}^{*} / S_{r}$.

Let $z \in Z_{r}$ be a root of $F_{r}(x)$. We find the corresponding root of $F_{0}(x)$, then the line $w \in \mathbb{P}^{1} \mathbb{F}_{\ell}$ that indexes it, and we index z by a vector $v \in w$.

Then for each λ, we get a candidate indexation of Z_{r} by V_{r} :

$$
\operatorname{Frob}_{p}^{n} z \leftrightarrow(\lambda \Phi)^{n} v
$$

Recovering the indexation of the roots

We can index the p-adic roots of $F_{0}(x)$ by $\mathbb{P}^{1} \mathbb{F}_{\ell}$ thanks to our Galois group computation, and then compute

$$
\varrho_{0}\left(\mathrm{Frob}_{p}\right)=\bar{\Phi} \in \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)
$$

by looking at Frob_{p} acting on them.
So $\varrho_{r}\left(\right.$ Frob $\left._{p}\right)=\lambda \Phi \in \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) / S_{r}$ for some unknown $\lambda \in \mathbb{F}_{\ell}^{*} / S_{r}$.
Let $z \in Z_{r}$ be a root of $F_{r}(x)$. We find the corresponding root of $F_{0}(x)$, then the line $w \in \mathbb{P}^{1} \mathbb{F}_{\ell}$ that indexes it, and we index z by a vector $v \in w$.
Then for each λ, we get a candidate indexation of Z_{r} by V_{r} :

$$
\operatorname{Frob}_{p}^{n} z \leftrightarrow(\lambda \Phi)^{n} v .
$$

For each of these, we compute one coefficient of one resolvent $\Gamma_{C}(x)$. All but one clash with archimedian bounds.

Since $\varrho_{0} \sim \rho_{f, \mathrm{l}}$, there exists a Galois character $\psi: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathbb{F}_{\ell}^{*} / S_{r}$ such that

$$
\varrho_{r} \sim \psi \otimes \rho_{f, r}^{S_{r}} .
$$

Since $\varrho_{0} \sim \rho_{f, \mathrm{l}}$, there exists a Galois character $\psi: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathbb{F}_{\ell}^{*} / S_{r}$ such that

$$
\varrho_{r} \sim \psi \otimes \rho_{f, \mathfrak{l}}^{S_{r}} .
$$

Because of the ramification, ψ must be a power of the cyclotomic character mod ℓ.

$\varrho_{r} \sim \rho_{f, l}^{S_{r}}$

Since $\varrho_{0} \sim \rho_{f, \mathrm{l}}$, there exists a Galois character $\psi: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathbb{F}_{\ell}^{*} / S_{r}$ such that

$$
\varrho_{r} \sim \psi \otimes \rho_{f, r}^{S_{r}} .
$$

Because of the ramification, ψ must be a power of the cyclotomic character mod ℓ.

We check that

$$
\operatorname{Tr} \varrho_{r}\left(\operatorname{Frob}_{v}\right) \in\left(a_{v}(f) \bmod \mathfrak{l}\right) S_{r}
$$

for some small $v \in \mathbb{N}$ such that $\langle v\rangle=\mathbb{F}_{\ell}^{*}$ and $a_{v}(f) \not \equiv 0 \bmod \mathfrak{l}$.

Examples of results

Example: $\rho_{\triangle, 29}$ (genus $g=22$)

p	$\rho_{\Delta, 29}\left(\right.$ Frob $\left._{p}\right)$ similar to	$\tau(p) \bmod 29$
$10^{1000}+453$	$\left[\begin{array}{cc}0 & 5 \\ 1 & 21\end{array}\right]$	21
$10^{1000}+1357$	$\left[\begin{array}{cc}0 & 28 \\ 1 & 8\end{array}\right]$	8
$10^{1000}+2713$	$\left[\begin{array}{cc}0 & 9 \\ 1 & 11\end{array}\right]$	11
$10^{1000}+4351$	$\left[\begin{array}{cc}0 & 26 \\ 1 & 0\end{array}\right]$	0
$10^{1000}+5733$	$\left[\begin{array}{cc}20 & 0 \\ 0 & 2\end{array}\right]$	22
$10^{1000}+7383$	$\left[\begin{array}{cc}19 & 0 \\ 0 & 10\end{array}\right]$	0
$10^{1000}+10401$	$\left[\begin{array}{cc}7 & 0 \\ 0 & 2\end{array}\right]$	9

Example: Lehmer's conjecture

Conjecture (Lehmer, 1947)

For all $n \geqslant 1, \tau(n) \neq 0$.

Example: Lehmer's conjecture

Conjecture (Lehmer, 1947)

For all $n \geqslant 1, \tau(n) \neq 0$.

Improvement of previous results (Bosman 2007):

p	$\rho_{\Delta, 29}\left(\right.$ Frob $\left._{p}\right)$ similar to	$\tau(p) \bmod 29$
22798241520242687999	$\left[\begin{array}{cc}0 & 26 \\ 1 & 3\end{array}\right]$	3
60707199950936063999	$\left[\begin{array}{cc}0 & 19 \\ 1 & 9\end{array}\right]$	9
93433753964906495999	$\left[\begin{array}{cc}0 & 14 \\ 1 & 4\end{array}\right]$	4
102797608484376575999	$\left[\begin{array}{cc}0 & 23 \\ 1 & 4\end{array}\right]$	4

Example: $\rho_{f_{24}, 31}($ genus $g=26)$

$$
\begin{gathered}
f_{24}=\sum_{n=1}^{\infty} \tau_{24}(n) q^{n} \in \mathcal{S}_{24}(1) \\
\tau_{24}(n) \in K_{f_{24}}=\mathbb{Q}(\alpha), \quad \alpha=\frac{1+\sqrt{144169}}{2}
\end{gathered}
$$

Example: $\rho_{f_{24}, 31}$ (genus $g=26$)

p	$\rho_{f_{24}, l_{5}}\left(\operatorname{Frob}_{p}\right)$	$\rho_{f_{24}, \mathrm{l}_{27}}\left(\operatorname{Frob}_{p}\right)$	$\tau_{24}(p) \bmod 31 \mathbb{Z}[\alpha]$
$10^{1000}+453$	$\left[\begin{array}{cc}0 & 10 \\ 1 & 5\end{array}\right]$	$\left[\begin{array}{cc}20 & 0 \\ 0 & 15\end{array}\right]$	$1+7 \alpha$
$10^{1000}+1357$	$\left[\begin{array}{cc}18 & 0 \\ 0 & 3\end{array}\right]$	$\left[\begin{array}{cc}25 & 0 \\ 0 & 22\end{array}\right]$	$1+4 \alpha$
$10^{1000}+2713$	$\left[\begin{array}{cc}24 & 0 \\ 0 & 2\end{array}\right]$	$\left[\begin{array}{cc}29 & 0 \\ 0 & 7\end{array}\right]$	$4+23 \alpha$
$10^{1000}+4351$	$\left[\begin{array}{cc}17 & 0 \\ 0 & 13\end{array}\right]$	$\left[\begin{array}{cc}11 & 0 \\ 0 & 6\end{array}\right]$	$9+29 \alpha$
$10^{1000}+5733$	$\left[\begin{array}{cc}19 & 0 \\ 0 & 12\end{array}\right]$	$\left[\begin{array}{cc}15 & 0 \\ 0 & 9\end{array}\right]$	$3+18 \alpha$
$10^{1000}+7383$	$\left[\begin{array}{cc}0 & 17 \\ 1 & 27\end{array}\right]$	$\left[\begin{array}{cc}7 & 0 \\ 0 & 2\end{array}\right]$	$17+2 \alpha$
$10^{1000}+10401$	$\left[\begin{array}{cc}22 & 0 \\ 0 & 5\end{array}\right]$	$\left[\begin{array}{cc}0 & 14 \\ 1 & 7\end{array}\right]$	$9+16 \alpha$

Thank you!

