Computing modular Galois representations

Nicolas Mascot

University of Warwick

CLap-CLap seminar February 9th 2017

For $N \in \mathbb{N}$, let

$$\Gamma_1(N) = \{ \gamma \in \mathsf{SL}_2(\mathbb{Z}) \mid \gamma \equiv \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \mod N \}.$$

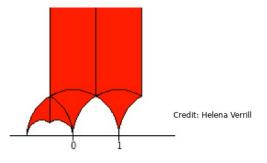
-

The modular curve $X_1(N)$

For $N \in \mathbb{N}$, let

$$\Gamma_1(N) = \{ \gamma \in \mathsf{SL}_2(\mathbb{Z}) \mid \gamma \equiv \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \mod N \}.$$

Let $\mathcal{H}^{\bullet} = \mathcal{H} \cup \mathbb{Q} \cup \{\infty\}$. Then $\Gamma_1(N) \setminus \mathcal{H}^{\bullet}$ is a compact Riemann surface.



For $N \in \mathbb{N}$, let

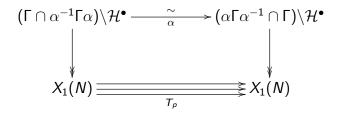
$$\Gamma_1(N) = \{ \gamma \in \mathsf{SL}_2(\mathbb{Z}) \mid \gamma \equiv \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \mod N \}.$$

Let $\mathcal{H}^{\bullet} = \mathcal{H} \cup \mathbb{Q} \cup \{\infty\}$. Then $\Gamma_1(N) \setminus \mathcal{H}^{\bullet}$ is a compact Riemann surface, which is the set of \mathbb{C} -points of a nonsingular, complete algebraic curve $X_1(N)$ defined over \mathbb{Q} and which has good reduction away from N.

We call its Jacobian $J_1(N)$.

Hecke operators

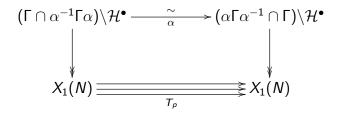
Let $\alpha = \begin{bmatrix} 1 & 0 \\ 0 & p \end{bmatrix}$ where $p \in \mathbb{N}$ is prime, and $\Gamma = \Gamma_1(N)$. The correspondence



extends to an operator on $J_1(N)$. We let \mathbb{T} be the ring generated by these operators for $p \in \mathbb{N}$ prime.

Hecke operators

Let $\alpha = \begin{bmatrix} 1 & 0 \\ 0 & p \end{bmatrix}$ where $p \in \mathbb{N}$ is prime, and $\Gamma = \Gamma_1(N)$. The correspondence



extends to an operator on $J_1(N)$. We let \mathbb{T} be the ring generated by these operators for $p \in \mathbb{N}$ prime.

Besides, let $\Gamma_0(N) = \{\gamma \in SL_2(\mathbb{Z}) \mid \gamma \equiv \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \mod N\}$. Then $\Gamma_0(N)/\Gamma_1(N) \simeq (\mathbb{Z}/N\mathbb{Z})^*$ by $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto d \mod N$, whence operators $\langle d \rangle$ for $d \in (\mathbb{Z}/N\mathbb{Z})^*$. Actually $\langle d \rangle \in \mathbb{T}$.

Let $\mathcal{N}_k(\Gamma_1(N)) \subset \mathcal{S}_k(\Gamma_1(N))$ be the finite set of newforms.

- ∢ ≣ ▶

Let $\mathcal{N}_k(\Gamma_1(N)) \subset \mathcal{S}_k(\Gamma_1(N))$ be the finite set of newforms.

Whenever $M \mid N$, we have

$$\mathcal{N}_k(\Gamma_1(M)) \xrightarrow{\longleftarrow} \mathcal{S}_k(\Gamma_1(N))$$
$$f(\tau) \longmapsto f(t\tau) \qquad (t \mid \frac{N}{M}).$$

伺 ト く ヨ ト く ヨ ト

Let $\mathcal{N}_k(\Gamma_1(N)) \subset \mathcal{S}_k(\Gamma_1(N))$ be the finite set of newforms.

For all
$$f = q + \sum_{n \geqslant 2} a_n q^n \in \mathcal{N}_k(\Gamma_1(N)),$$

 $orall p \in \mathbb{N}, \quad T_p f = a_p f,$

so that

$$K_f = \mathbb{Q}(a_2, a_3, \cdots)$$

is actually a number field. Also, there exists

$$\varepsilon_f: (\mathbb{Z}/N\mathbb{Z})^* \longrightarrow K_f^*$$

such that

$$\langle d \rangle f = \varepsilon_f(d) f.$$

Let $\mathcal{N}_k(\Gamma_1(N)) \subset \mathcal{S}_k(\Gamma_1(N))$ be the finite set of newforms. For all $f = q + \sum_{n \ge 2} a_n q^n \in \mathcal{N}_k(\Gamma_1(N))$, $\mathcal{K}_f = \mathbb{Q}(a_2, a_3, \cdots)$

is actually a number field. Also, there exists

$$\varepsilon_f: (\mathbb{Z}/N\mathbb{Z})^* \longrightarrow K_f^*$$

such that

$$\langle d \rangle f = \varepsilon_f(d) f.$$

For all $\sigma \in Aut(\overline{\mathbb{Q}})$,

$$f^{\sigma} = q + \sum_{n \geq 2} \sigma(a_n) q^n \in \mathcal{N}_k(\Gamma_1(N))$$

and $K_{f^{\sigma}} = K_f^{\sigma}$, $\varepsilon_{f^{\sigma}} = \sigma \circ \varepsilon_f$.

Let
$$f = q + \sum_{n=2}^{+\infty} a_n q^n \in \mathcal{N}_k(\Gamma_1(N)), \ k \ge 2.$$

Let
$$f = q + \sum_{n=2}^{+\infty} a_n q^n \in \mathcal{N}_k(\Gamma_1(N)), \ k \ge 2.$$

Pick a prime l of K_f lying over $\ell \in \mathbb{N}$, and let $K_{f,l}$ be the l-adic completion of K_f .

Let
$$f = q + \sum_{n=2}^{+\infty} a_n q^n \in \mathcal{N}_k(\Gamma_1(N)), \ k \ge 2.$$

Pick a prime l of K_f lying over $\ell \in \mathbb{N}$, and let $K_{f,l}$ be the *l*-adic completion of K_f .

Theorem (Deligne, Serre, Shimura, 1971)

There exists a unique continuous Galois representation

$$R_{f,\mathfrak{l}}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_2(K_{f,\mathfrak{l}}),$$

which is unramified outside ℓN , and such that for all $p \nmid \ell N$, $R_{f,l}(\operatorname{Frob}_p)$ has characteristic polynomial

$$X^2 - a_p X + \varepsilon_f(p) p^{k-1} \in K_{f,\mathfrak{l}}[X].$$

Let
$$f = q + \sum_{n=2}^{+\infty} a_n q^n \in \mathcal{N}_k(\Gamma_1(N)), \ k \ge 2.$$

Pick a prime l of K_f lying over $\ell \in \mathbb{N}$, and let \mathbb{F}_l be its residual field.

Theorem (Deligne, Serre, Shimura, 1971)

There exists a unique continuous Galois representation

$$\rho_{f,\mathfrak{l}}\colon G_{\mathbb{Q}}\longrightarrow \mathsf{GL}_2(\mathbb{F}_{\mathfrak{l}}),$$

which is unramified outside ℓN , and such that for all $p \nmid \ell N$, $\rho_{f,l}(\operatorname{Frob}_p)$ has characteristic polynomial

$$X^2 - a_p X + \varepsilon_f(p) p^{k-1} \in \mathbb{F}_{\mathfrak{l}}[X].$$

Theorem (Deligne, Serre, Shimura, 1971)

There exists a unique continuous Galois representation

$$\rho_{f,\mathfrak{l}}\colon G_{\mathbb{Q}}\longrightarrow \mathrm{GL}_{2}(\mathbb{F}_{\mathfrak{l}}),$$

which is unramified outside ℓN , and such that for all $p \nmid \ell N$, $\rho_{f,I}(\text{Frob}_p)$ has characteristic polynomial

$$X^2 - \frac{a_p}{A}X + \varepsilon_f(p)p^{k-1} \in \mathbb{F}_{\mathfrak{l}}[X].$$

Application (Couveignes, Edixhoven, 2006)

 $\rho_{f,\mathfrak{l}}$ can be computed in time polynomial in ℓ , and $a_p \mod \mathfrak{l}$ in time polynomial in log p.

Goal: compute $\rho_{f,l}$.

• The Galois representation itself,

< ∃ →

- The Galois representation itself,
- The field L = Q<sup>Ker ρ_{f,l} is a Galois number field, with Galois group (almost) GL₂(𝔽_l), whose ramification behaviour is well-understood
 → Inverse Galois problem for GL₂ and PGL₂, Gross's problem, construction of very lightly ramified fields,
 </sup>

- The Galois representation itself,
- The field L = Q
 ^{Ker ρ_{f,t}} is a Galois number field, with Galois group (almost) GL₂(𝔽_t), whose ramification behaviour is well-understood
 → Inverse Galois problem for GL₂ and PGL₂, Gross's problem, construction of very lightly ramified fields,
- Fast computation of Fourier coefficients: computation of a_p mod l = Tr ρ_{f,l}(Frob_p) in time (log p)^{2+ε(p)}.

Theorem (M.)

• The field cut out by $\rho_{\Delta,31}$ is the field generated by the 31^{st} roots of unity and by the roots of

 $x^{44} - 21\,x^{43} + 118\,x^{62} + 527\,x^{61} - 8587\,x^{60} + 18383\,x^{59} + 263035\,x^{58} - 2095879\,x^{57} + 2416016\,x^{56} + 44283128\,x^{55} - 240474192\,x^{54} + 24687350\,x^{53} + 3638349266\,x^{52} - 12617823980\,x^{51} - 110297265505\,x^{68} + 155175311479\,x^{69} - 196432252560\,x^{68} - 771645455342\,x^{47} + 148278347203\,x^{64} + 2641351695834\,x^{55} + 4656870173875\,x^{44} - 45480241563019\,x^{43} - 54597672402738\,x^{42} + 501026042999912\,x^{41} - 496561492329624\,x^{40} - 712343504941160\,x^{39} + 5302741451178477\,x^{58} - 30548025690548139\,x^{57} + 3487865423629056\,x^{56} + 28878452405339724\,x^{53} - 874206875792459963\,x^{34} - 825384106177640249\,x^{33} + 6958723996166230970\,x^{32} - 4535706640900181166\,x^{51} - 30017821501048367756\,x^{50} + 565835742488118068410\,x^{59} + 50057682456797414358\,x^{26} - 276843951776325798765\,x^{57} + 87013091280485835964\,x^{56} - 726668576124853689529\,x^{55} - 5007682456797414358\,x^{26} - 2576945904973739451\,x^{52} + 35068775035208999529\,x^{27} - 2261986657658172377618\,x^{21} - 570173629656236274645\,x^{30} + 3502589322612898456054\,x^{19} - 641003473636730532822\,x^{18} - 2939323025600320147061\,x^{17} + 2544712936976926702002\,x^{15} + 36125137963345226955671\,x^{15} - 5531458813331740131989\,x^{14} - 18703775559594899286772\,x^{13} + 43941206930666596531797\,x^{12} + 17651378415566112635127\,x^{11} + 1092823996755265190216\,x^{10} - 81873940560715641107\,x^{9} - 1426433995583019051055\,x^{8} + 1282985482101897274374\,x^{7} - 5000167623901195766317\,x^{6} - 4576453813020082994820\,x^{8} + 188007194515101431644\,x^{8} + 1879472401274\,x^{8} + 2529421149212306258356.$

(several CPU years).

(日)

Example 1

Theorem (M.)

- The field cut out by $\rho_{\Delta,31}$ is the field generated by the 31^{st} roots of unity and by the roots of $x^{64} 21 x^{63} + \cdots$.
- We have the following values:

р	$ \rho_{\Delta,31}(Frob_p) $ similar to	$\tau(p) \mod 31$
$10^{1000} + 453$	$\left[\begin{array}{rrr} 30 & 0 \\ 0 & 20 \end{array}\right]$	19
$10^{1000} + 1357$	$\left[\begin{array}{rrr} 0 & 2 \\ 1 & 13 \end{array}\right]$	13
$10^{1000} + 4351$	$\left[\begin{array}{cc} 4 & 1\\ 0 & 4 \end{array}\right]$	8

(30s of CPU time per p).

Theorem (M.)

Let
$$f = q + 2q^2 - 4q^3 + O(q^4) \in \mathcal{N}_6(\Gamma_0(5))$$
.

The field cut out by the projective representation attached to $f \mod 13$ is the field generated by the roots of

 $x^{14} - x^{13} - 26x^{11} + 39x^{10} + 104x^9 - 299x^8 - 195x^7 + 676x^6 + 481x^5 - 156x^4 - 39x^3 + 65x^2 - 14x + 1.$

Theorem (M.)

Let
$$f = q + 2q^2 - 4q^3 + O(q^4) \in \mathcal{N}_6(\Gamma_0(5))$$
.
The field cut out by the projective representation attached to f mod 13 is the field generated by the roots of

 $x^{14} - x^{13} - 26x^{11} + 39x^{10} + 104x^9 - 299x^8 - 195x^7 + 676x^6 + 481x^5 - 156x^4 - 39x^3 + 65x^2 - 14x + 1.$

This polynomial and this field were not known before. Its root discriminant is $47.816\cdots$, whereas the next best known example has root discriminant $69.939\cdots$.

Conjecture (Roberts, M.)

This field is the one that has the smallest discriminant among all the Galois number fields with Galois group $PGL_2(\mathbb{F}_{13})$.

Explicit construction of the representation

When A is an Abelian variety over \mathbb{Q} of dimension g, define

$$\mathsf{Ta}_{\ell} A = \varprojlim_{n \in \mathbb{N}} A[\ell^n],$$

a free \mathbb{Z}_{ℓ} -module of rank 2g, and

$$V_{\ell}A = \operatorname{\mathsf{Ta}}_{\ell}A \otimes_{\mathbb{Z}} \mathbb{Q} = \operatorname{\mathsf{Ta}}_{\ell}A \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}.$$

When A is an Abelian variety over \mathbb{Q} of dimension g, define

$$\mathsf{Ta}_{\ell} A = \varprojlim_{n \in \mathbb{N}} A[\ell^n],$$

a free \mathbb{Z}_{ℓ} -module of rank 2g, and

$$V_{\ell}A = \mathsf{Ta}_{\ell}A \otimes_{\mathbb{Z}} \mathbb{Q} = \mathsf{Ta}_{\ell}A \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}.$$

The action of Galois yields a representation

$$R_{A,\ell}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2g}(\mathbb{Q}_{\ell})$$

which is unramified away from ℓ and the primes of bad reduction of A.

The action of Galois yields a representation

$$R_{A,\ell}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2g}(\mathbb{Q}_{\ell})$$

which is unramified away from ℓ and the primes of bad reduction of A.

Take now $A = J_1(N)$. Then $V_\ell J_1(N)$ is actually a free $(\mathbb{T} \otimes \mathbb{Q}_\ell)$ -module of rank 2, whence

$$R_{J_1(N),\ell}:G_{\mathbb{Q}}\longrightarrow \mathsf{GL}_2(\mathbb{T}\otimes \mathbb{Q}_\ell)$$

unramified away from ℓN .

The action of Galois yields a representation

$$R_{A,\ell}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2g}(\mathbb{Q}_{\ell})$$

which is unramified away from ℓ and the primes of bad reduction of A.

Take now $A = J_1(N)$. Then $V_\ell J_1(N)$ is actually a free $(\mathbb{T} \otimes \mathbb{Q}_\ell)$ -module of rank 2, whence

$$R_{J_1(N),\ell}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_2(\mathbb{T} \otimes \mathbb{Q}_\ell)$$

unramified away from ℓN .

For $p \nmid \ell N$, the characteristic polynomial of the image of Frob_p is

$$X_2 - T_p X + p \langle p \rangle \in (\mathbb{T} \otimes \mathbb{Q}_\ell)[X].$$

Modular Abelian varieties

For
$$f \in \mathcal{N}_2(\Gamma_1(N))$$
, let
 $I_f = \{T \in \mathbb{T} \mid Tf = 0\},\$

and define

$$A_f = J_1(N)/I_f J_1(N).$$

▶ < ∃ ▶</p>

э

Modular Abelian varieties

For
$$f \in \mathcal{N}_2(\Gamma_1(N))$$
, let $I_f = \{T \in \mathbb{T} \mid Tf = 0\},$

and define

$$A_f = J_1(N)/I_f J_1(N).$$

Properties

•
$$I_{f^{\sigma}} = I_f$$
, so $A_{f^{\sigma}} = A_f$.

- *A_f* is a simple Abelian variety defined over \mathbb{Q} .
- dim $A_f = [K_f : \mathbb{Q}].$
- $K_f \hookrightarrow \operatorname{End}(A_f) \otimes \mathbb{Q}$ via $a_p \mapsto T_p$, $\varepsilon_f(d) \mapsto \langle d \rangle$. Indeed, $K_f \simeq (\mathbb{T}/I_f) \otimes \mathbb{Q}$.

•
$$L(A_f, s) = \prod_{\sigma} L(f^{\sigma}, s) \stackrel{\text{def}}{=} \prod_{\sigma} \sum_{n \ge 1} \frac{\sigma(a_n)}{n^s}$$

The decomposition of $J_1(N)$

Over \mathbb{Q} , $J_1(N)$ is isogenous to

$$\prod_{M|N}\prod_{f\in G_{\mathbb{Q}}\setminus\mathcal{N}_{2}(\Gamma_{1}(M))}A_{f}^{\sigma_{0}(N/M)}.$$

So

$$V_\ell J_1(N) \simeq \prod_{M \mid N} \prod_{f \in G_{\mathbb{Q}} \setminus \mathcal{N}_2 \left(\Gamma_1(M)
ight)} (V_\ell A_f)^{\sigma_0(N/M)}$$

as $G_{\mathbb{Q}}$ -modules.

The decomposition of $J_1(N)$

Example: N = 22

$$\begin{split} \mathcal{S}_2\big(\Gamma_1(1)\big) &= \mathcal{S}_2\big(\Gamma_1(2)\big) = 0.\\ \text{At level 11, we have one rational newform} \\ f_{11} &= q - 2q^2 - q^3 + O(q^4).\\ \text{At level 22, the newforms are} \\ f_{22} &= q + \zeta_5 q^2 + (\zeta_5^3 - \zeta_5 - 1)q^3 + O(q^4)\\ \text{and its Galois conjugates.}\\ &\rightsquigarrow \mathcal{S}_2\big(\Gamma_1(22)\big) = \underbrace{\langle f_{11}(\tau), f_{11}(2\tau) \rangle}_{\text{Old}} \oplus \underbrace{\langle \text{Galois conjugates of } f_{22} \rangle}_{\text{New}} \\ &J_1(22) \sim A_{f_{11}}^2 \times A_{f_{22}}.\\ \mathcal{A}_{f_{11}} \text{ is the elliptic curve of conductor 11; } A_{f_{22}} \text{ is a simple} \end{split}$$

 $A_{f_{11}}$ is the elliptic curve of conductor 11; $A_{f_{22}}$ is a simple Abelian variety of dimension 4. So genus $(X_1(22)) = 6$.

Recovering the modular representations

 $V_{\ell}A_f$ is a \mathbb{Q}_{ℓ} -vector space of dimension $2[K_f : \mathbb{Q}]$, and actually a free $K_f \otimes \mathbb{Q}_{\ell}$ -module of rank 2.

Recovering the modular representations

 $V_{\ell}A_f$ is a \mathbb{Q}_{ℓ} -vector space of dimension $2[K_f : \mathbb{Q}]$, and actually a free $K_f \otimes \mathbb{Q}_{\ell}$ -module of rank 2.

As $K_f \otimes \mathbb{Q}_\ell \simeq \prod_{\mathfrak{l} \mid \ell} K_{f,\mathfrak{l}}$, we recover the representations

$$R_{f,\mathfrak{l}}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_2(K_{f,\mathfrak{l}})$$

inside $V_{\ell}A_f \subset V_{\ell}J_1(N)$.

Recovering the modular representations

 $V_{\ell}A_f$ is a \mathbb{Q}_{ℓ} -vector space of dimension $2[K_f : \mathbb{Q}]$, and actually a free $K_f \otimes \mathbb{Q}_{\ell}$ -module of rank 2.

As $K_f \otimes \mathbb{Q}_{\ell} \simeq \prod_{\mathfrak{l}|\ell} K_{f,\mathfrak{l}}$, we recover the representations $R_{f,\mathfrak{l}} : G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_2(K_{f,\mathfrak{l}})$

inside $V_{\ell}A_f \subset V_{\ell}J_1(N)$.

In particular, if l is of degree 1, $\rho_{f,l}$ is afforded by

$$V_{f,\mathfrak{l}} = igcap_{p} \operatorname{Ker} \left(T_{p}|_{J_{1}(N)[\ell]} - a_{p}(f) mod \mathfrak{l}
ight) \subset J_{1}(N)[\ell].$$

Weight lowering

Weight-lowering theorem

Suppose $\ell \ge 5$ and $\ell \nmid N$, and let $f \in \mathcal{N}_k(\Gamma_1(N))$ be a newform of weight $3 \le k \le \ell$. There exists a newform $f_2 \in \mathcal{N}_2(\Gamma_1(\ell N))$ of weight 2 and a prime $\mathfrak{l}_2 \mid \ell$ of K_{f_2} such that

 $f \mod \mathfrak{l} = f_2 \mod \mathfrak{l}_2$.

Weight lowering

Weight-lowering theorem

Suppose $\ell \ge 5$ and $\ell \nmid N$, and let $f \in \mathcal{N}_k(\Gamma_1(N))$ be a newform of weight $3 \le k \le \ell$. There exists a newform $f_2 \in \mathcal{N}_2(\Gamma_1(\ell N))$ of weight 2 and a prime $\mathfrak{l}_2 \mid \ell$ of K_{f_2} such that $f \mod \mathfrak{l} = f_2 \mod \mathfrak{l}_2$.

Thus $\rho_{f_2,I_2} \simeq \rho_{f,I}$, so that we can use the same geometric construction again. We now find $\rho_{f,I}$ in $J_1(\ell N)[\ell]$.

Thus $\rho_{f_2,I_2} \simeq \rho_{f,I}$, so that we can use the same geometric construction again. We now find $\rho_{f,I}$ in $J_1(\ell N)[\ell]$.

Example

Take $f = \Delta \in \mathcal{N}_{12}(\Gamma_1(1))$. If $\ell \ge 13$, there exists

$$f_2 \in \mathcal{N}_2(\Gamma_1(\ell)), \qquad \mathfrak{l}_2 \subset K_{f_2}$$

such that

$$f_2 \mod \mathfrak{l}_2 = \Delta \mod \ell \text{ in } \mathbb{F}_\ell[[q]],$$

so that $\rho_{\Delta,\ell}$ is afforded in $J_1(\ell)[\ell]$.

The modular curve $X_H(\ell N)$

The condition

 $f \mod \mathfrak{l} = f_2 \mod \mathfrak{l}_2$

implies that

$$\forall x, \ \varepsilon_{f_2}(x) \bmod \mathfrak{l}_2 = x^{k-2}\varepsilon_f(x).$$

 $\rho_{f,\mathfrak{l}}$ actually occurs in the Jacobian of the modular curve $X_{H}(\ell N)$ attached to

$$\Gamma_{H}(\ell N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_{0}(\ell N) \mid d \in H \right\}$$

where $H = \operatorname{Ker}(\varepsilon_{f_2} \mod \mathfrak{l}_2) \leqslant (\mathbb{Z}/\ell N\mathbb{Z})^*$.

The genus of this curve is sometimes much smaller than that of $X_1(\ell N)$.

Computing in the modular Jacobian

Divisors on curves

Let X be a proper, nonsingular, absolutely integral curve of genus g over a field K.

A *divisor* on X is a formal \mathbb{Z} -linear combination of points of X.

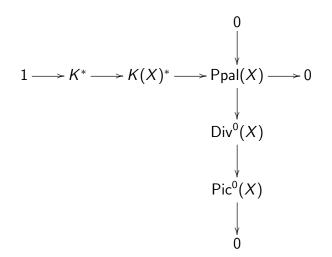
The *degree* of
$$\sum_{P \in X} n_P P$$
 is $\sum_{P \in X} n_P \in \mathbb{Z}$.

Divisors of degree 0 form a subgroup $Div^{0}(X)$ of the group Div(X) of divisors on X.

A divisor is *principal* if it is the divisor (f) of a function $f \in K(X)^*$. Principal divisors form a subgroup Ppal(X) of $Div^0(X)$.

We define $\operatorname{Pic}^{0}(X) = \operatorname{Div}^{0}(X) / \operatorname{Ppal}(X)$.

Divisors on curves



<回>< E> < E> < E> = E

Divisors of degree 0 form a subgroup $Div^0(X)$ of the group Div(X) of divisors on X.

A divisor is *principal* if it is the divisor (f) of a function $f \in K(X)^*$. Principal divisors form a subgroup Ppal(X) of $Div^0(X)$.

We define $\operatorname{Pic}^{0}(X) = \operatorname{Div}^{0}(X) / \operatorname{Ppal}(X)$.

We have

$$\operatorname{Pic}^{0}(X)(L) \simeq \operatorname{Jac}(X)(L)$$

for all extensions L of K.

Assume that $K = \mathbb{C}$, and let $\omega_1, \dots, \omega_g$ be a basis of holomorphic differentials on X.

Assume that $K = \mathbb{C}$, and let $\omega_1, \dots, \omega_g$ be a basis of holomorphic differentials on X.

A *period* is a vector

$$\lambda = \int_{\gamma} (\omega_i)_{i=1\cdots g} \in \mathbb{C}^g$$

where γ is a loop on X.

Peridods forms a lattice $\Lambda \in \mathbb{C}^g$, and $Jac(X)(\mathbb{C}) \simeq \mathbb{C}^g / \Lambda$.

Assume that $K = \mathbb{C}$, and let $\omega_1, \dots, \omega_g$ be a basis of holomorphic differentials on X.

A *period* is a vector

$$\lambda = \int_{\gamma} (\omega_i)_{i=1\cdots g} \in \mathbb{C}^g$$

where γ is a loop on X.

Peridods forms a lattice $\Lambda \in \mathbb{C}^g$, and $Jac(X)(\mathbb{C}) \simeq \mathbb{C}^g / \Lambda$.

If we fix $O \in X$, we can define

$$\begin{aligned} \jmath_O: X &\longrightarrow \mathbb{C}^g / \Lambda \\ P &\longmapsto \int_O^P (\omega_i)_{i=1\cdots g}, \end{aligned}$$

A period is a vector

$$\lambda = \int_{\gamma} (\omega_i)_{i=1\cdots g} \in \mathbb{C}^g$$

where γ is a loop on X.

Peridods forms a lattice $\Lambda \in \mathbb{C}^g$, and $Jac(X)(\mathbb{C}) \simeq \mathbb{C}^g / \Lambda$.

If we fix $O \in X$, we can define

$$\mathcal{J}_O: X \longrightarrow \mathbb{C}^g / \Lambda$$
 $P \longmapsto \int_O^P (\omega_i)_{i=1\cdots g},$

extend it additively to Div(X), and restrict it to

$$j: \operatorname{Div}^{0}(X) \longrightarrow \mathbb{C}^{g}/\Lambda$$
$$\sum_{n} (P'_{n} - P_{n}) \longmapsto \sum_{n} \int_{P_{n}}^{P'_{n}} (\omega_{i})_{i=1\cdots g}$$

If we fix $O \in X$, we can define

$$\begin{aligned} j_O: X &\longrightarrow \mathbb{C}^g / \Lambda \\ P &\longmapsto \int_O^P (\omega_i)_{i=1\cdots g}, \end{aligned}$$

extend it additively to Div(X), and restrict it to

$$j: \operatorname{Div}^{0}(X) \longrightarrow \mathbb{C}^{g}/\Lambda$$
$$\sum_{n} (P'_{n} - P_{n}) \longmapsto \sum_{n} \int_{P_{n}}^{P'_{n}} (\omega_{i})_{i=1\cdots g}$$

which no longer depends on O and whose kernel is exactly Ppal(X), whence

$$j: \operatorname{Pic}^{0}(X) \xrightarrow{\sim} \mathbb{C}^{g}/\Lambda = \operatorname{Jac}(X).$$

Makdisi's algorithms: basic blocks

When $D \in Div(X)$, write

$$H^{0}(D) = \{ f \in K(X)^{*} | (f) + D \ge 0 \} \cup \{ 0 \}.$$

Lemma (Basic blocks)

• If deg D_1 , deg $D_2 \ge 2g + 1$, then the multiplication map

$$H^0(D_1)\otimes H^0(D_2)\longrightarrow H^0(D_1+D_2)$$

is surjective.

- $f \cdot H^0(D) = H^0(D (f)).$
- If deg $D_1 \geqslant 2g$, then

$$H^0(D_2 - D_1) = \{ f \in K(X) \mid f \cdot H^0(D_1) \subset H^0(D_2) \}$$

э

Makdisi's algorithms: representation of elements

Fix a divisor D_0 on X of degree $d_0 \ge 2g + 1$, and let

$$V = H^0(3D_0), \quad V_2 = H^0(6D_0),$$

whose elements are represented by multipoint evaluation, or Taylor series (or both !)

Makdisi's algorithms: representation of elements

Fix a divisor D_0 on X of degree $d_0 \ge 2g + 1$, and let

$$V = H^0(3D_0), \quad V_2 = H^0(6D_0),$$

whose elements are represented by multipoint evaluation, or Taylor series (or both !)

A point $x \in Jac(X) = Pic^{0}(X) \leftrightarrow$ the subspace

$$W_{D_x}=V(-D_x)=H^0(3D_0-D_x)\subset V,$$

where $D_x \ge 0$ is a divisor of degree d_0 such that

$$[D_x-D_0]=x.$$

 D_x is not unique !

Let W_{D_1} , W_{D_2} represent two points $x_1, x_2 \in Jac(X)$.

Let W_{D_1} , W_{D_2} represent two points $x_1, x_2 \in Jac(X)$.

• Compute $H^0(6D_0 - D_1 - D_2) = W_{D_1} \cdot W_{D_2}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let W_{D_1} , W_{D_2} represent two points $x_1, x_2 \in Jac(X)$.

- Compute $H^0(6D_0 D_1 D_2) = W_{D_1} \cdot W_{D_2}$.
- ② Compute $H^0(3D_0-D_1-D_2) = \{f \in V \mid f \cdot V \subset H^0(6D_0-D_1-D_2)\}.$

(4月) (日) (日) 日

Let W_{D_1} , W_{D_2} represent two points $x_1, x_2 \in Jac(X)$.

- Compute $H^0(6D_0 D_1 D_2) = W_{D_1} \cdot W_{D_2}$.
- ② Compute $H^0(3D_0-D_1-D_2) = \{f \in V \mid f \cdot V \subset H^0(6D_0-D_1-D_2)\}.$

Take
$$s \in H^0(3D_0 - D_1 - D_2)$$
, so that
$$(s) = -3D_0 + D_1 + D_2 + D_3, \text{ some } D_3 \ge 0.$$
Compute $H_0(6D_0 - D_1 - D_2 - D_3) = s \cdot V.$

(4月) (日) (日) 日

Let W_{D_1} , W_{D_2} represent two points $x_1, x_2 \in Jac(X)$.

- Compute $H^0(6D_0 D_1 D_2) = W_{D_1} \cdot W_{D_2}$.
- ② Compute $H^0(3D_0-D_1-D_2) = \{f \in V \mid f \cdot V \subset H^0(6D_0-D_1-D_2)\}.$

Take
$$s \in H^0(3D_0 - D_1 - D_2)$$
, so that
$$(s) = -3D_0 + D_1 + D_2 + D_3, \text{ some } D_3 \ge 0.$$
Compute $H_0(6D_0 - D_1 - D_2 - D_3) = s \cdot V.$

• Compute $W_{D_3} = H^0(3D_0 - D_3)$ = { $f \in V \mid f \cdot H^0(3D_0 - D_1 - D_2) \subset H_0(6D_0 - D_1 - D_2 - D_3)$ }.

Let W_{D_1} , W_{D_2} represent two points $x_1, x_2 \in Jac(X)$.

- Compute $H^0(6D_0 D_1 D_2) = W_{D_1} \cdot W_{D_2}$.
- ② Compute $H^0(3D_0-D_1-D_2) = \{f \in V \mid f \cdot V \subset H^0(6D_0-D_1-D_2)\}.$

Take
$$s \in H^0(3D_0 - D_1 - D_2)$$
, so that
$$(s) = -3D_0 + D_1 + D_2 + D_3, \text{ some } D_3 \ge 0.$$
Compute $H_0(6D_0 - D_1 - D_2 - D_3) = s \cdot V.$

• Compute $W_{D_3} = H^0(3D_0 - D_3)$ = { $f \in V \mid f \cdot H^0(3D_0 - D_1 - D_2) \subset H_0(6D_0 - D_1 - D_2 - D_3)$ }.

Then W_{D_3} represents $x_3 \in \operatorname{Jac}(X)$ such that $x_1 + x_2 + x_3 = 0$.

Makdisi's algorithms on the modular curve

Let $f_0 \in S_2(\Gamma_1(\ell N))$ be defined over \mathbb{Q} .

We take $D_0 = (f_0) + c_1 + c_2 + c_3$, where the c_i are cusps such that $\sum c_i$ is defined over \mathbb{Q} .

$$\rightsquigarrow H^0(D_0) \simeq \mathcal{S}_2\big(\Gamma_1(\ell N)\big) \oplus \langle E_{1,2}, E_{1,3} \rangle \subset \mathcal{M}_2\big(\Gamma_1(\ell N)\big),$$

where $E_{1,i}$ is an Eisenstein series of weight 2 that vanishes at all the cusps except c_1 and c_i .

Let $f_0 \in S_2(\Gamma_1(\ell N))$ be defined over \mathbb{Q} .

We take $D_0 = (f_0) + c_1 + c_2 + c_3$, where the c_i are cusps such that $\sum c_i$ is defined over \mathbb{Q} .

$$\rightsquigarrow H^0(D_0) \simeq \mathcal{S}_2\big(\Gamma_1(\ell N)\big) \oplus \langle E_{1,2}, E_{1,3} \rangle \subset \mathcal{M}_2\big(\Gamma_1(\ell N)\big),$$

where $E_{1,i}$ is an Eisenstein series of weight 2 that vanishes at all the cusps except c_1 and c_i .

We represent these forms by their q-expansion at all cusps.

Let $f_0 \in S_2(\Gamma_1(\ell N))$ be defined over \mathbb{Q} .

We take $D_0 = (f_0) + c_1 + c_2 + c_3$, where the c_i are cusps such that $\sum c_i$ is defined over \mathbb{Q} .

$$\rightsquigarrow H^0(D_0) \simeq \mathcal{S}_2\big(\Gamma_1(\ell N)\big) \oplus \langle E_{1,2}, E_{1,3} \rangle \subset \mathcal{M}_2\big(\Gamma_1(\ell N)\big),$$

where $E_{1,i}$ is an Eisenstein series of weight 2 that vanishes at all the cusps except c_1 and c_i .

We represent these forms by their q-expansion at all cusps.

We then compute $V = H^0(3D_0) \subset \mathcal{M}_6(\Gamma_1(\ell N))$ by multiplication.

Computation of the representation

From now on, we assume that $f \in \mathcal{N}_k(\Gamma_1(N))$ and $\mathfrak{l} \subset K_f$ are such that

- deg $\mathfrak{l} = 1$,
- $\ell \nmid N$ and $k \leq \ell$,
- Im $\rho_{f,\mathfrak{l}} \supset SL_2(\mathbb{F}_{\mathfrak{l}}).$

In order to compute $\rho_{f,\mathfrak{l}}$, we first compute the number field

$$L = \overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f,\mathfrak{l}}} = \mathbb{Q}(x, x \in V_{f,\mathfrak{l}})$$

that it cuts out, and then the image of the Frobenius elements.

In order to compute $\rho_{f,\mathfrak{l}}$, we first compute the number field

$$L = \overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f,\mathfrak{l}}} = \mathbb{Q}(x, x \in V_{f,\mathfrak{l}})$$

that it cuts out, and then the image of the Frobenius elements.

 If we were dealing with an elliptic curve, we could simply compute the division polynomial Φ_ℓ ∈ ℚ[X]. In order to compute $\rho_{f,\mathfrak{l}}$, we first compute the number field

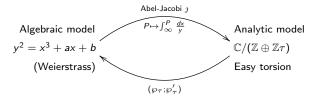
$$L = \overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f,\mathfrak{l}}} = \mathbb{Q}(x, x \in V_{f,\mathfrak{l}})$$

that it cuts out, and then the image of the Frobenius elements.

- If we were dealing with an elliptic curve, we could simply compute the division polynomial Φ_ℓ ∈ ℚ[X].
- But we are dealing with the Jacobian $J_1(\ell)$, so this approach is intractable.

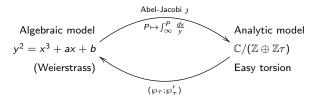
The analytic model comes in handy

In the elliptic curve case:

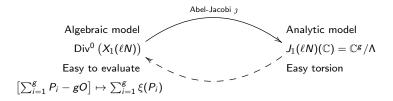


The analytic model comes in handy

In the elliptic curve case:



In the modular case, we work with divisors instead of points.



There is no \wp , so we must invert j "by hand".

Strategy

Goal: compute $V_{f,\mathfrak{l}} \subset J_1(\ell N)[\ell]$.

- Period lattice Λ of $X_1(\ell N)$ High accuracy *q*-expansions, term-by-term integration \rightsquigarrow analytic model of $J_1(\ell N)$
- Solution of divisors \mathbb{C} of the ℓ -torsion Computation of divisors D_1 , $D_2 \in \text{Div}^0(X_1(\ell N))$ representing a basis of $V_{f,\mathfrak{l}} \subset J_1(\ell N)[\ell]$
- Sevaluation of the ℓ -torsion Choice of a "well-behaved" function $\alpha \colon V_{f,\mathfrak{l}} \longrightarrow \overline{\mathbb{Q}}$

 \rightsquigarrow number field L cut out by $ho_{f,\mathfrak{l}}$

Frobenius elements

Recipe to compute the image of the Frobenius at p, given $p \nmid \ell N$

Step 1

• Period lattice Λ of $X_1(\ell N)$ High accuracy *q*-expansions, term-by-term integration

 \rightsquigarrow analytic model of $J_1(\ell N)$

Approximation over $\mathbb C$ of the $\ell\text{-torsion}$

Computation of divisors D_1 , $D_2 \in \operatorname{Div}^0 \left(X_1(\ell N)
ight)$ representing a basis of

 $V_{f,\mathfrak{l}} \subset J_1(\ell N)[\ell]$

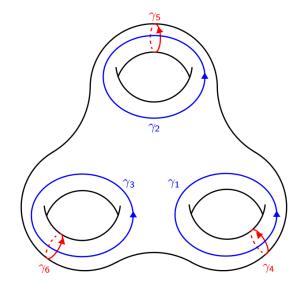
Evaluation of the ℓ -torsion Choice of a "well-behaved" function $\alpha \colon V_{f,\mathfrak{l}} \longrightarrow \overline{\mathbb{Q}}$

 \rightsquigarrow number field *L* cut out by $\rho_{f,\mathfrak{l}}$

Frobenius elements

Recipe to compute the image of the Frobenius at p, given $p \nmid \ell N$

A (1) < A (1) < A (1) < A (1) </p>



Analytic model of $J_1(\ell N)$

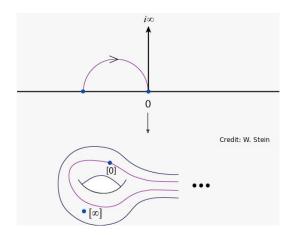
Let $\omega_1, \dots, \omega_g$ be a basis of $\Omega^1(X_1(\ell N)) \simeq S_2(\Gamma_1(\ell N))$. Integrate the differentials $\omega_i(\tau) d\tau$ along the curves γ_j . This yields a lattice $\Lambda = \left\langle \left(\int_{\gamma_j} \omega_i \right)_{1 \leqslant i \leqslant g} \right\rangle_{1 \leqslant j \leqslant 2g} \subset \mathbb{C}^g$, and $J_1(\ell) = \mathbb{C}^g / \Lambda$.

Analytic model of $J_1(\ell N)$

Let $\omega_1, \dots, \omega_g$ be a basis of $\Omega^1(X_1(\ell N)) \simeq S_2(\Gamma_1(\ell N))$. Integrate the differentials $\omega_i(\tau) d\tau$ along the curves γ_j . This yields a lattice $\Lambda = \left\langle \left(\int_{\gamma_j} \omega_i \right)_{1 \leqslant i \leqslant g} \right\rangle_{1 \leqslant j \leqslant 2g} \subset \mathbb{C}^g$, and $J_1(\ell) = \mathbb{C}^g / \Lambda$.

These curves can be represented by modular symbols $\mathbb{S}_2(\Gamma_1(\ell N)) \subset \mathbb{M}_2(\Gamma_1(\ell N)).$

These curves can be represented by modular symbols $\mathbb{S}_2(\Gamma_1(\ell N)) \subset \mathbb{M}_2(\Gamma_1(\ell N)).$



Split the integration path, move the endpoints to $\infty. \rightsquigarrow$ integrals of the form

$$\int_{\infty}^{z} \left(\sum_{n=1}^{+\infty} \omega_n e^{2\pi i n \tau} \right) d\tau = \frac{1}{2\pi i} \sum_{n=1}^{+\infty} \frac{\omega_n}{n} e^{2\pi i n z},$$

which converge best for $\text{Im } z \gg 0$.

 ${\mathbb T}$ also acts on modular symols, and integration is equivariant:

$$\int_{T_w} \omega = \int_w T\omega.$$

So, if we have a \mathbb{T} -generating family of symbols (w_i) which are easy to integrate along, we can compute the periods:

$$\gamma_{j} = \sum_{i} T_{j,i} w_{i}, \quad T_{j,i} \in \mathbb{T},$$
$$\int_{\gamma_{j}} \omega = \int_{\sum_{i} T_{j,i} w_{i}} \omega = \sum_{i} \int_{w_{i}} T_{j,i} \omega = \sum_{i} \lambda(T_{j,i}, \omega) \int_{w_{i}} \omega.$$

Let
$$\omega = \sum_{n=0}^{+\infty} \omega_n q^n \in S_2(\Gamma_1(\ell N))$$
, and let $B \in \mathbb{N}$.

A⊒ ▶ < 3

Let
$$\omega = \sum_{n=0}^{+\infty} \omega_n q^n \in S_2(\Gamma_1(\ell N))$$
, and let $B \in \mathbb{N}$.

Theorem (Manin, 1972)

Using modular symbols, the ω_n can be computed for $n \leq B$ in a number of bit operations which is polynomial (but at least quadratic) in B.

Let
$$\omega = \sum_{n=0}^{+\infty} \omega_n q^n \in S_2(\Gamma_1(\ell N))$$
, and let $B \in \mathbb{N}$.

Theorem (Manin, 1972)

Using modular symbols, the ω_n can be computed for $n \leq B$ in a number of bit operations which is polynomial (but at least quadratic) in B.

Theorem (M., 2013)

The ω_n can be computed for $n \leq B$ in $\widetilde{O}(B)$ bit operations.

Let
$$\omega = \sum_{n=0}^{+\infty} \omega_n q^n \in S_2(\Gamma_1(\ell N))$$
, and let $B \in \mathbb{N}$

• Bounds are known on the $\omega_n \rightsquigarrow$ we compute $\omega_n \mod \mathfrak{p}$, with $p \mid \mathfrak{p}$ a large enough prime.

Let
$$\omega = \sum_{n=0}^{+\infty} \omega_n q^n \in S_2(\Gamma_1(\ell N))$$
, and let $B \in \mathbb{N}$.

Sounds are known on the $\omega_n \rightsquigarrow$ we compute $\omega_n \mod \mathfrak{p}$, with $p \mid \mathfrak{p}$ a large enough prime.

• We use
$$u = \frac{1}{j} = \frac{E_4^3 - E_6^2}{1728 E_4^3} = \sum_{n=1}^{+\infty} u_n q^n$$
, the u_n are easy to compute mod p .

Let
$$\omega = \sum_{n=0}^{+\infty} \omega_n q^n \in S_2(\Gamma_1(\ell N))$$
, and let $B \in \mathbb{N}$.

- Sounds are known on the ω_n → we compute ω_n mod p, with p | p a large enough prime.
- We use $u = \frac{1}{j} = \frac{E_4^3 E_6^2}{1728 E_4^3} = \sum_{n=1}^{+\infty} u_n q^n$, the u_n are easy to compute mod p.
- So There is an equation Φ(X, Y) ∈ 𝔽_𝔅[X, Y] with known degrees such that Φ(u, ω/du) = 0.

Let
$$\omega = \sum_{n=0}^{+\infty} \omega_n q^n \in S_2(\Gamma_1(\ell N))$$
, and let $B \in \mathbb{N}$.

- Bounds are known on the ω_n → we compute ω_n mod p, with p | p a large enough prime.
- We use $u = \frac{1}{j} = \frac{E_4^3 E_6^2}{1728 E_4^3} = \sum_{n=1}^{+\infty} u_n q^n$, the u_n are easy to compute mod p.
- So There is an equation Φ(X, Y) ∈ 𝔽_𝔅[X, Y] with known degrees such that Φ(u, ω/du) = 0.
- We compute Φ by identification in $\mathbb{F}_{\mathfrak{p}}[[q]]$.

Let
$$\omega = \sum_{n=0}^{+\infty} \omega_n q^n \in S_2(\Gamma_1(\ell N))$$
, and let $B \in \mathbb{N}$.

- Sounds are known on the ω_n → we compute ω_n mod p, with p | p a large enough prime.
- We use $u = \frac{1}{j} = \frac{E_4^3 E_6^2}{1728 \ E_4^3} = \sum_{n=1}^{+\infty} u_n q^n$, the u_n are easy to compute mod p.
- So There is an equation Φ(X, Y) ∈ 𝔽_𝔅[X, Y] with known degrees such that Φ(u, ω/du) = 0.
- We compute Φ by identification in $\mathbb{F}_{\mathfrak{p}}[[q]]$.
- So From precomputed u_n for $n \leq B$, we compute ω by Newton-iterating on $\Phi(u, \omega/du) = 0$.

✓ Period lattice Λ of $X_1(\ell N)$ High accuracy *q*-expansions, term-by-term integration

 \rightsquigarrow analytic model of $J_1(\ell N)$

Approximation over $\mathbb C$ of the ℓ -torsion

Computation of divisors D_1 , $D_2 \in \text{Div}^0(X_1(\ell N))$ representing a basis of

 $V_{f,\mathfrak{l}} \subset J_1(\ell N)$

Evaluation of the ℓ -torsion Choice of a "well-behaved" function $\alpha \colon V_{f,\mathfrak{l}} \longrightarrow \overline{\mathbb{Q}}$

 \rightsquigarrow number field *L* cut out by $\rho_{f,\mathfrak{l}}$

Frobenius elements

Recipe to compute the image of the Frobenius at p, given $p \nmid \ell N$

・ 一 ・ ・ ・ ・ ・ ・

The setup

$$V_{f,l} \stackrel{\text{def}}{=} \bigcap_{\substack{p \text{ prime}}} \operatorname{Ker} \left(T_p - a_p \right) \Big|_{J_1(\ell N)[\ell]}$$
$$= \bigcap_{p \leqslant B} \operatorname{Ker} \left(T_p - a_p \right) \Big|_{J_1(\ell N)[\ell]}$$

for B large enough.

The matrices of $T_p \bigcirc J_1(\ell N)[\ell]$ allow us to find $x_1, x_2 \in J_1(\ell N)[\ell](\mathbb{C}) = (\mathbb{C}^g/\Lambda)[\ell] = \frac{1}{\ell}\Lambda/\Lambda$

which form a basis of $V_{f,l} \subset J_1(\ell N)[\ell]$.

Goal: compute D_1 , $D_2 \in \text{Div}^0(X_1(\ell N)(\mathbb{C}))$ such that $[D_k] = x_k.$

$$j\left(\sum_{n} \left(P'_{n} - P_{n}\right)\right) \stackrel{\text{def}}{=} \sum_{n} \left(\int_{P_{n}}^{P'_{n}} \omega_{i}\right)_{1 \leq i \leq g} = x.$$

- ∢ ≣ ▶

$$\jmath\left(\sum_{n=1}^{g} \left(P'_{n}-P_{n}\right)\right) \stackrel{\text{def}}{=} \sum_{n=1}^{g} \left(\int_{P_{n}}^{P'_{n}} \omega_{i}\right)_{1 \leq i \leq g} = x$$

Fix g points $P_1, \dots, P_g \in X_1(\ell N)(\mathbb{C})$, and solve for P'_1, \dots, P'_g by Newton iteration in \mathbb{C}^g .

$$\jmath\left(\sum_{n=1}^{g} \left(P'_{n}-P_{n}\right)\right) \stackrel{\text{def}}{=} \sum_{n=1}^{g} \left(\int_{P_{n}}^{P'_{n}} \omega_{i}\right)_{1 \leq i \leq g} = x$$

Fix g points $P_1, \dots, P_g \in X_1(\ell N)(\mathbb{C})$, and solve for P'_1, \dots, P'_g by Newton iteration in \mathbb{C}^g .

Poor precision, and likely to diverge...

$$\jmath\left(\sum_{n=1}^{g}\left(P_{n}^{\prime(m)}-P_{n}^{(m)}\right)\right) \stackrel{\text{def}}{=} \sum_{n=1}^{g}\left(\int_{\rho_{n}^{(m)}}^{P_{n}^{\prime(m)}}\omega_{i}\right)_{1\leqslant i\leqslant g} = \frac{x}{2^{m}}$$

Fix g points $P_1^{(m)}, \dots, P_g^{(m)} \in X_1(\ell N)(\mathbb{C})$, and solve for $P_1^{(m)}, \dots, P_g^{(m)}$ by Newton iteration in \mathbb{C}^g .

Abel-Jacobi and Newton

We have a target $x \in \mathbb{C}^g / \Lambda$, we want

$$\jmath\left(\sum_{n=1}^{g}\left(P_{n}^{\prime(m)}-P_{n}^{(m)}\right)\right) \stackrel{\text{def}}{=} \sum_{n=1}^{g}\left(\int_{P_{n}^{(m)}}^{P_{n}^{\prime(m)}}\omega_{i}\right)_{1\leqslant i\leqslant g} = \frac{x}{2^{m}}$$

Fix g points $P_1^{(m)}, \dots, P_g^{(m)} \in X_1(\ell N)(\mathbb{C})$, and solve for $P_1^{\prime (m)}, \dots, P_g^{\prime (m)}$ by Newton iteration in \mathbb{C}^g .

Proposition (Inverse function theorem)

If $m \gg 0$, then for generic $P_1^{(m)}, \dots, P_1^{(m)}$, then Newton converges to a solution with $P_i^{\prime(m)}$ close to $P_i^{(m)}$, $1 \le i \le g$.

Recovering ℓ -torsion divisors

$$[D] = 2^{m}[D^{(m)}] = \left[\sum_{n=1}^{g} 2^{m} (P'_{n} - P_{n})\right] \in J_{1}(\ell N)[\ell].$$

 \rightsquigarrow Use Makdisi's algorithms to double $[D^{(m)}]$ repeatedly.

✓ Period lattice Λ of $X_1(\ell N)$ High accuracy *q*-expansions, term-by-term integration → analytic model of $J_1(\ell N)$

✓ Approximation over \mathbb{C} of the *ℓ*-torsion Computation of divisors D_1 , $D_2 \in \text{Div}^0(X_1(\ell N))$ representing a basis of $V_{f,\mathfrak{l}} \subset J_1(\ell N)$

► Evaluation of the ℓ -torsion Choice of a "well-behaved" function $\alpha: V_{f,\mathfrak{l}} \longrightarrow \overline{\mathbb{Q}}$

 \rightsquigarrow number field *L* cut out by $\rho_{f,\mathfrak{l}}$

Frobenius elements

Recipe to compute the image of the Frobenius at p, given $p \nmid \ell N$

▲ □ ▶ ▲ 三 ▶ ▲

Evaluating the ℓ -torsion

We have computed divisors D_1 and D_2 representing a basis of $V_{f,l} \subset J_1(\ell N)[\ell]$.

Evaluating the ℓ -torsion

We have computed divisors D_1 and D_2 representing a basis of $V_{f,l} \subset J_1(\ell N)[\ell]$.

Thanks to Makdisi's algorithms, we compute \mathbb{F}_{ℓ} -linear combinations of D_1 and D_2 \rightsquigarrow divisors representing all the ℓ^2 points of $V_{f,\mathfrak{l}}$.

Evaluating the ℓ -torsion

We have computed divisors D_1 and D_2 representing a basis of $V_{f,l} \subset J_1(\ell N)[\ell]$.

Thanks to Makdisi's algorithms, we compute \mathbb{F}_{ℓ} -linear combinations of D_1 and D_2 \rightsquigarrow divisors representing all the ℓ^2 points of $V_{f,l}$.

Proposition

Let $\alpha \in \mathbb{Q}(J_1(\ell N))$, and let $F(x) = \prod_{\substack{D \in V_{f,I} \\ D \neq 0}} (x - \alpha(D)).$ Then $F(x) \in \mathbb{Q}[x]$. For generic α , F(x) is irreducible, and its decomposition field is

$$L = \overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f,\mathfrak{l}}}$$

Classical choice of $\alpha \in \mathbb{Q}(J_1(\ell N))$

Pick $\xi \in \mathbb{Q}(X_1(\ell N))$, and extend it to $J_1(\ell N)$ by

$$\alpha: \quad J_1(\ell N) \quad \dashrightarrow \quad \mathbb{C}$$
$$\sum_{i=1}^g P_i - gO \quad \longmapsto \quad \sum_{i=1}^g \xi(P_i) \quad \cdot$$

Classical choice of $\alpha \in \mathbb{Q}(J_1(\ell N))$

Pick $\xi \in \mathbb{Q}(X_1(\ell N))$, and extend it to $J_1(\ell N)$ by

$$\alpha: \quad J_1(\ell N) \quad \dashrightarrow \quad \mathbb{C}$$
$$\sum_{i=1}^g P_i - gO \quad \longmapsto \quad \sum_{i=1}^g \xi(P_i) \quad \cdot$$

The divisor of poles of $\boldsymbol{\alpha}$ is

$$(\alpha)_{\infty} = \sum_{\substack{Q \text{ pole of } \xi}} \tau^*_{[Q-O]} \Theta,$$

so ξ must be chosen with degree as small as possible.

Classical choice of $\alpha \in \mathbb{Q}(J_1(\ell N))$

Pick $\xi \in \mathbb{Q}(X_1(\ell N))$, and extend it to $J_1(\ell N)$ by

$$\alpha: \quad J_1(\ell N) \quad \dashrightarrow \quad \mathbb{C}$$
$$\sum_{i=1}^g P_i - gO \quad \longmapsto \quad \sum_{i=1}^g \xi(P_i) \quad \cdot$$

The divisor of poles of $\boldsymbol{\alpha}$ is

$$(\alpha)_{\infty} = \sum_{\substack{Q \text{ pole of } \xi}} \tau^*_{[Q-O]} \Theta,$$

so $\boldsymbol{\xi}$ must be chosen with degree as small as possible. Unfortunately,

Better choice of $\alpha \in \mathbb{Q}(J_1(\ell N))$

Points on $J_1(\ell N)$ can be written E - gO, $E \ge 0$ of degree g. Fix an effective divisor B of degree 2g. Then

$$H^0(B-E)=\mathbb{C}\phi_E.$$

We can thus define

$$\begin{array}{rcl} \alpha \colon & J_1(\ell N) & \dashrightarrow & \mathbb{C} \\ & E - gO & \longmapsto & \frac{\phi_E(P)}{\phi_E(Q)} \end{array}$$

where P, $Q \in X_1(\ell N)(\mathbb{Q})$ are fixed.

Better choice of $\alpha \in \mathbb{Q}(J_1(\ell N))$

$$H^0(B-E)=\mathbb{C}\phi_E.$$

We can thus define

$$\begin{array}{rcl} \alpha \colon & J_1(\ell N) & \dashrightarrow & \mathbb{C} \\ & E - gO & \longmapsto & \frac{\phi_E(P)}{\phi_E(Q)} \end{array}$$

where P, $Q \in X_1(\ell N)(\mathbb{Q})$ are fixed.

Proposition (M., 2012)

The divisor of poles of α is the sum of only 2 translates of Θ .

Step 4

✓ Period lattice Λ of $X_1(\ell N)$ High accuracy *q*-expansions, term-by-term integration \rightarrow analytic model of $J_1(\ell N)$

✓ Approximation over \mathbb{C} of the ℓ -torsion Computation of divisors D_1 , $D_2 \in \text{Div}^0(X_1(\ell N))$ representing a basis of $V_{f,I} \subset J_1(\ell N)$

✓ Evaluation of the ℓ -torsion Choice of a "well-behaved" function $\alpha: V_{f,l} \longrightarrow \overline{\mathbb{Q}}$

 \rightsquigarrow number field L cut out by $\rho_{f,\mathfrak{l}}$

Frobenius elements

Recipe to compute the image of the Frobenius at p, given $p \nmid \ell N$

・ 一 ・ ・ ・ ・ ・ ・

Summary

We have computed $F(x) \in \mathbb{Q}[x]$ with decomposition field $L = \overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f,\mathfrak{l}}}$. We know the roots of F(x) in \mathbb{C} with high accuracy, and the permutation action of $\operatorname{Gal}(L/\mathbb{Q}) \subseteq \operatorname{GL}_2(\mathbb{F}_{\ell})$ on them as well.

Summary

We have computed $F(x) \in \mathbb{Q}[x]$ with decomposition field $L = \overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f,\mathfrak{l}}}$. We know the roots of F(x) in \mathbb{C} with high accuracy, and the permutation action of $\operatorname{Gal}(L/\mathbb{Q}) \subseteq \operatorname{GL}_2(\mathbb{F}_{\ell})$ on them as well.

We must now compute

 $\rho_{f,\mathfrak{l}}(\mathsf{Frob}_p)$

for prime $p \in \mathbb{N}$.

Summary

We have computed $F(x) \in \mathbb{Q}[x]$ with decomposition field $L = \overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f,\mathfrak{l}}}$. We know the roots of F(x) in \mathbb{C} with high accuracy, and the permutation action of $\operatorname{Gal}(L/\mathbb{Q}) \subseteq \operatorname{GL}_2(\mathbb{F}_{\ell})$ on them as well.

We must now compute

 $\rho_{f,\mathfrak{l}}(\mathsf{Frob}_p)$

for prime $p \in \mathbb{N}$.

$$f = q + \sum_{n \geqslant 2} a_n q^n$$
, $\operatorname{Tr} \rho_{f,\mathfrak{l}}(\operatorname{Frob}_p) = a_p \mod \mathfrak{l}$.

Theorem (T. & V. Dokchitser, 2010)

Let $F(x) \in \mathbb{Q}[x]$ be irreducible, $n = \deg F(x)$, $L \subset \mathbb{C}$ its decomposition field, and $a_i \in \mathbb{C}$ its roots.

Theorem (T. & V. Dokchitser, 2010)

Let $F(x) \in \mathbb{Q}[x]$ be irreducible, $n = \deg F(x)$, $L \subset \mathbb{C}$ its decomposition field, and $a_i \in \mathbb{C}$ its roots.

For almost all $h(x) \in \mathbb{Z}[x]_{n-1}$, the resolvents

$$\Gamma_C(x) = \prod_{\sigma \in C} \left(x - \sum_{i=1}^n h(a_i) \sigma(a_i) \right) \in \mathbb{Q}[x],$$

C conjugacy class of $Gal(L/\mathbb{Q})$, are pairwise coprime.

The Dokchitsers' resolvents

Theorem (T. & V. Dokchitser, 2010)

For almost all $h(x) \in \mathbb{Z}[x]_{n-1}$, the resolvents

$$\Gamma_{\mathcal{C}}(x) = \prod_{\sigma \in \mathcal{C}} \left(x - \sum_{i=1}^{n} h(a_i) \sigma(a_i) \right) \in \mathbb{Q}[x],$$

C conjugacy class of $Gal(L/\mathbb{Q})$, are pairwise coprime.

For each prime $p \in \mathbb{N}$ such that F(x) is defined and squarefree mod p, let

$$\mathbb{F}_{\rho}[a] = \mathbb{F}_{\rho}[x]/ig(F(x) mod pig), \quad u = \operatorname{Tr}_{\mathbb{F}_{\rho}[a]/\mathbb{F}_{\rho}} h(a)a^{
ho} \in \mathbb{F}_{
ho}.$$

Theorem (T. & V. Dokchitser, 2010)

For almost all $h(x) \in \mathbb{Z}[x]_{n-1}$, the resolvents

$$\Gamma_{\mathcal{C}}(x) = \prod_{\sigma \in \mathcal{C}} \left(x - \sum_{i=1}^{n} h(a_i) \sigma(a_i) \right) \in \mathbb{Q}[x],$$

C conjugacy class of $Gal(L/\mathbb{Q})$, are pairwise coprime.

For each prime $p \in \mathbb{N}$ such that F(x) is defined and squarefree mod p, let

 $\mathbb{F}_p[a] = \mathbb{F}_p[x]/(F(x) \bmod p), \quad u = \operatorname{Tr}_{\mathbb{F}_p[a]/\mathbb{F}_p} h(a)a^p \in \mathbb{F}_p.$

Then
$$\operatorname{Frob}_{p} \in C \Longrightarrow \Gamma_{C}(u) = 0 \mod p$$
.

Problem

The degree of F(x) is large ($\approx \ell^2$), and its coefficients are huge, so the coefficients of $\Gamma_C(x)$ are huge^{ℓ^2}.

There are algorithms to reduce a polynomial, that is to say compute another polynomial defining the same number field. But F(x) is simply too big for them.

Instead, we could consider the projective representation

$$ho^{\mathsf{proj}}\colon \operatorname{\mathsf{Gal}}(\overline{\mathbb{Q}}/\mathbb{Q}) \xrightarrow{
ho_{f,\mathfrak{l}}} \operatorname{\mathsf{GL}}_2(\mathbb{F}_\ell) \longrightarrow \operatorname{\mathsf{PGL}}_2(\mathbb{F}_\ell).$$

Instead, we could consider the projective representation

$$ho^{\mathsf{proj}}\colon \operatorname{\mathsf{Gal}}(\overline{\mathbb{Q}}/\mathbb{Q}) \xrightarrow{
ho_{f,\mathfrak{l}}} \operatorname{\mathsf{GL}}_2(\mathbb{F}_\ell) \longrightarrow \operatorname{\mathsf{PGL}}_2(\mathbb{F}_\ell).$$

This corresponds to

$$F^{\operatorname{proj}}(x) = \prod_{w \in \mathbb{P}^1 \mathbb{F}_{\ell}} \left(x - \sum_{\substack{D \in w \\ D \neq 0}} \alpha(D) \right) \in \mathbb{Q}[X],$$

which is of degree $\ell+1$ only, and can thus be reduced.

More generally, for $S \leq \mathbb{F}_{\ell}^*$ embedded diagonally into $GL_2(\mathbb{F}_{\ell})$, we can consider

 $\rho^{S} \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \xrightarrow{\rho_{f,\mathfrak{l}}} \operatorname{GL}_{2}(\mathbb{F}_{\ell}) \longrightarrow \operatorname{GL}_{2}(\mathbb{F}_{\ell})/S.$

More generally, for $S \leq \mathbb{F}_{\ell}^*$ embedded diagonally into $GL_2(\mathbb{F}_{\ell})$, we can consider

$$\rho^{S} \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \xrightarrow{\rho_{f,\mathfrak{l}}} \operatorname{GL}_{2}(\mathbb{F}_{\ell}) \longrightarrow \operatorname{GL}_{2}(\mathbb{F}_{\ell})/S.$$

Fact

Let $A \in GL_2(\mathbb{F}_\ell)$ such that we know its image in $GL_2(\mathbb{F}_\ell)/S$ and det A. If $-1 \notin S$, we can recover A.

More generally, for $S \leq \mathbb{F}_{\ell}^*$ embedded diagonally into $GL_2(\mathbb{F}_{\ell})$, we can consider

$$\rho^{S} \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \xrightarrow{\rho_{f,\mathfrak{l}}} \operatorname{GL}_{2}(\mathbb{F}_{\ell}) \longrightarrow \operatorname{GL}_{2}(\mathbb{F}_{\ell})/S.$$

Fact

Let $A \in GL_2(\mathbb{F}_\ell)$ such that we know its image in $GL_2(\mathbb{F}_\ell)/S$ and det A. If $-1 \notin S$, we can recover A.

As det $\rho_{f,l} = \varepsilon \chi_{\ell}^{k-1}$ is known, we consider

$$\mathbb{F}_{\ell}^* = S_0 \underset{2}{>} S_1 \underset{2}{>} \cdots \underset{2}{>} S_r \not\supseteq -1,$$

where $r = \operatorname{ord}_2(\ell - 1)$, and the associated $F_i(x) := F^{S_i}(x)$.

More generally, for $S \leqslant \mathbb{F}_{\ell}^*$ embedded diagonally into $GL_2(\mathbb{F}_{\ell})$, we can consider

$$\rho^{S} \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \xrightarrow{\rho_{f,\mathfrak{l}}} \operatorname{GL}_{2}(\mathbb{F}_{\ell}) \longrightarrow \operatorname{GL}_{2}(\mathbb{F}_{\ell})/S.$$

Fact

Let $A \in GL_2(\mathbb{F}_\ell)$ such that we know its image in $GL_2(\mathbb{F}_\ell)/S$ and det A. If $-1 \notin S$, we can recover A.

As det $\rho_{f,l} = \varepsilon \chi_{\ell}^{k-1}$ is known, we consider

$$\mathbb{F}_{\ell}^* = S_0 \underset{2}{>} S_1 \underset{2}{>} \cdots \underset{2}{>} S_r \not\supseteq -1,$$

where $r = \operatorname{ord}_2(\ell - 1)$, and the associated $F_i(x) := F^{S_i}(x)$.

We now focus on $F_r(x)$ instead of F(x).

First, we can reduce $F_0(x)$, whose degree is only $\ell + 1$.

First, we can reduce $F_0(x)$, whose degree is only $\ell + 1$.

Then, we write $K_i = \mathbb{Q}[x]/F_i(x)$, so that

$$K_{i+1} = K_i(\sqrt{\Delta_i}), \quad \Delta_i \in K_i.$$

We can inductively reduce the $F_i(x)$, by writing $\Delta_i = A_i^2 \delta_i$ in K_i with δ_i small.

The fields

The filtration

$$\mathbb{F}_{\ell}^* = S_0 \underset{\frac{\gamma}{2}}{\supseteq} S_1 \underset{\frac{\gamma}{2}}{\supseteq} \cdots \underset{\frac{\gamma}{2}}{\supseteq} S_r = S \not\supseteq -1$$

yields a tower of quadratic extensions

$$L_0 \subsetneq L_1 \subsetneq \cdots \subsetneq L_r,$$

where $L_i = \overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f,\mathfrak{l}}^{S_i}}$.

The fields

The filtration

$$\mathbb{F}_{\ell}^* = S_0 \underset{\frac{\gamma}{2}}{\supseteq} S_1 \underset{\frac{\gamma}{2}}{\supseteq} \cdots \underset{\frac{\gamma}{2}}{\supseteq} S_r = S \not\supseteq -1$$

yields a tower of quadratic extensions

$$L_0 \subsetneq L_1 \subsetneq \cdots \subsetneq L_r,$$

where $L_i = \overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f,\mathfrak{l}}^{S_i}}$.

Proposition

$$L = L_r \underbrace{L_{\det \rho_{f,\mathfrak{l}}}}_{\subseteq \mathbb{Q}(\zeta_M)}.$$

Nicolas Mascot Computing modular Galois representations

Certification of the output

4 3 b

We have identified the coefficients of

$$F(x) = \prod_{\substack{D \in V_{f,l} \\ D \neq 0}} (x - \alpha(D)) \in \mathbb{Q}[x],$$

beyond reasonable doubt, but this is not rigorous.

We have identified the coefficients of

$$F(x) = \prod_{\substack{D \in V_{f,\mathfrak{l}} \\ D \neq 0}} (x - \alpha(D)) \in \mathbb{Q}[x],$$

beyond reasonable doubt, but this is not rigorous.

Question

How do we certify that F(x) defines $\rho_{f,l}$?

We have identified the coefficients of

$$F(x) = \prod_{\substack{D \in V_{f,\mathfrak{l}} \\ D \neq 0}} (x - \alpha(D)) \in \mathbb{Q}[x],$$

beyond reasonable doubt, but this is not rigorous.

Question

How do we certify that F(x) defines $\rho_{f,l}$?

For simplicity, we will assume that f and \mathfrak{l} are such that $\ell \ge 5$, N = 1, and that $\text{Im } \rho_{f,\mathfrak{l}} = \text{GL}_2(\mathbb{F}_\ell)$.

We have identified the coefficients of

$$F(x) = \prod_{\substack{D \in V_{f,\mathfrak{l}} \\ D \neq 0}} (x - \alpha(D)) \in \mathbb{Q}[x],$$

beyond reasonable doubt, but this is not rigorous.

Question

How do we certify that F(x) defines $\rho_{f,l}$?

For simplicity, we will assume that f and \mathfrak{l} are such that $\ell \ge 5$, N = 1, and that $\text{Im } \rho_{f,\mathfrak{l}} = \text{GL}_2(\mathbb{F}_\ell)$.

We must prove that

2 the corresponding Galois representation ϱ is $\rho_{f,\underline{l}}$.

We have identified the coefficients of

$$F(x) = \prod_{\substack{D \in V_{f,i} \\ D \neq 0}} (x - \alpha(D)) \in \mathbb{Q}[x],$$

beyond reasonable doubt, but this is not rigorous.

Question

How do we certify that F(x) defines $\rho_{f,\mathfrak{l}}$?

For simplicity, we will assume that f and \mathfrak{l} are such that $\ell \ge 5$, N = 1, and that $\text{Im } \rho_{f,\mathfrak{l}} = \text{GL}_2(\mathbb{F}_\ell)$.

We must prove that

- $\operatorname{Gal}_{\mathbb{Q}}(F) \circlearrowleft \{\alpha(D)\}\$ is permutation-isomorphic to $\operatorname{GL}_2(\mathbb{F}_{\ell}) \circlearrowleft \mathbb{F}_{\ell}^2 - \{0\}$ \rightsquigarrow compute $\operatorname{Gal}_{\mathbb{Q}}(F)$ with Magma,
- 2 the corresponding Galois representation ρ is $\rho_{f,l}$.

We have identified the coefficients of

$$F(x) = \prod_{\substack{D \in V_{f,i} \\ D \neq 0}} (x - \alpha(D)) \in \mathbb{Q}[x],$$

beyond reasonable doubt, but this is not rigorous.

Question

How do we certify that F(x) defines $\rho_{f,l}$?

For simplicity, we will assume that f and \mathfrak{l} are such that $\ell \ge 5$, N = 1, and that $\text{Im } \rho_{f,\mathfrak{l}} = \text{GL}_2(\mathbb{F}_\ell)$.

We must prove that

• $\operatorname{Gal}_{\mathbb{Q}}(F) \circlearrowleft \{\alpha(D)\}\$ is permutation-isomorphic to $\operatorname{GL}_{2}(\mathbb{F}_{\ell}) \circlearrowleft \mathbb{F}_{\ell}^{2} - \{0\}$ $\rightsquigarrow \text{ compute } \operatorname{Gal}_{\mathbb{Q}}(F) \text{ with Magma,}$

2 the corresponding Galois representation ρ is $\rho_{f,\mathfrak{l}}$

→→ use Serre's modularity conjecture. < □> <@> < ≧> < ≧> 、 ≧

Theorem (Khare+Wintenberger, 2009)

Let $c \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ be the complex conjugation, and let

 $\rho \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathbb{F}_\ell)$

be an irreducible Galois representation such that det $\rho(c) = -1$. Then there exists a newform $f \in S_{k_{\rho}}(\Gamma_1(N_{\rho}), \varepsilon_{\rho})$ and a prime $\mathfrak{l}|\ell$ such that

 $\rho \sim \rho_{f,\mathfrak{l}}.$

Moreover, there are explicit recipes to compute N_{ρ} , k_{ρ} and ε_{ρ} .

Let $x, y, z, t \in \mathbb{P}^1 \mathbb{F}_{\ell}$ be pairwise distinct. Their cross-ratio is by definition $\gamma(t)$, where $\gamma \in \text{PGL}_2(\mathbb{F}_{\ell})$ is the only element sending (x, y, z) to $(\infty, 0, 1)$.

Let $x, y, z, t \in \mathbb{P}^1 \mathbb{F}_{\ell}$ be pairwise distinct. Their cross-ratio is by definition $\gamma(t)$, where $\gamma \in \text{PGL}_2(\mathbb{F}_{\ell})$ is the only element sending (x, y, z) to $(\infty, 0, 1)$.

Proposition

Let γ be a permutation of $\mathbb{P}^1 \mathbb{F}_{\ell}$. Then

 γ preserves cross-ratios $\iff \gamma \in \mathsf{PGL}_2(\mathbb{F}_\ell).$

Proposition

Let γ be a permutation of $\mathbb{P}^1 \mathbb{F}_{\ell}$. Then

$$\gamma$$
 preserves cross-ratios $\iff \gamma \in \mathsf{PGL}_2(\mathbb{F}_\ell).$

Let $(\beta_w = \sum_{0 \neq D \in w} \alpha(D))_{w \in \mathbb{P}^1 \mathbb{F}_{\ell}}$ be the roots of $F^{\text{proj}}(x)$, and let $\lambda_1, \dots, \lambda_4$ be distinct integers. We compute

$$R_4(x) = \prod_{w_1, \cdots, w_4 \ ext{distinct}} \left(x - \sum_{m=1}^4 \lambda_m eta_{w_m}
ight) \in \mathbb{Z}[x].$$

If $R_4(x)$ is squarefree and factors along cross-ratios, this proves that $\operatorname{Gal}_{\mathbb{Q}}(F^{\operatorname{proj}}) \leq \operatorname{PGL}_2(\mathbb{F}_{\ell})$.

We can define the unordered cross-ratio map

$$u: \quad \begin{pmatrix} \mathbb{P}^{1}(\mathbb{F}_{\ell}) \\ 4 \end{pmatrix} \longrightarrow \mathbb{F}_{\ell} \\ \{x, y, z, t\} \longmapsto j([x, y, z, t]) ,$$

where $j(\lambda) = 256 \frac{(1-\lambda+\lambda^2)^3}{\lambda^2(1-\lambda)^2}$.

We can define the unordered cross-ratio map

$$J: \quad \begin{pmatrix} \mathbb{P}^{1}(\mathbb{F}_{\ell}) \\ 4 \end{pmatrix} \longrightarrow \mathbb{F}_{\ell} \\ \{x, y, z, t\} \longmapsto j([x, y, z, t]) ,$$

where $j(\lambda) = 256 \frac{(1-\lambda+\lambda^2)^3}{\lambda^2(1-\lambda)^2}$.

Theorem (M., 2016)

• $\forall \ell \ge 5$, $\mathsf{PGL}_2(\mathbb{F}_\ell)$ is a maximal subgroup of $\mathfrak{S}_{\mathbb{P}^1(\mathbb{F}_\ell)}$.

Theorem (M., 2016)

∀ℓ ≥ 5, PGL₂(𝔽_ℓ) is a maximal subgroup of 𝔅_{𝔼¹(𝔽_ℓ)}.
∀ℓ ≠ 5, γ ♡ 𝔅¹(𝔽_ℓ) preserves u ⇔ γ ∈ PGL₂(𝔽_ℓ).

Instead of

$$R_4(x) = \prod_{\substack{w_1, \cdots, w_4 \\ \text{distinct}}} \left(x - \sum_{m=1}^4 \nu_m \beta_{w_m} \right) \in \mathbb{Z}[x],$$

for $\ell \neq 5$ we may use

$$R_{4,\text{sym}}(x) = \prod_{W \in \binom{\mathbb{P}^1(\mathbb{F}_\ell)}{4}} \left(x - \sum_{w \in W} \beta_w \right) \in \mathbb{Z}[X]$$

whose degree is 24 times smaller.

Proof of the projective representation

Theorem(Projective Serre) (Moon+Taguchi 2003, Bosman 2007)

Let $\pi: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{PGL}_2(\mathbb{F}_{\ell})$ be an irreducible projective Galois representation such that $\pi(c)$ fixes exactly two points of $\mathbb{P}^1\mathbb{F}_{\ell}$. If the discriminant of the field corresponding to $\pi^{-1}\left(\left[\begin{smallmatrix}*&*\\0&*\end{smallmatrix}\right]\right)$ is of the form $\pm \ell^{\ell+k-2}$ for some $k \ge 3$, then there exists a newform $f \in S_k(1)$ and a prime $\mathfrak{l}|\ell$ such that $\pi \sim \rho_{f_1}^{\operatorname{proj}}$.

Proof of the projective representation

Theorem(Projective Serre) (Moon+Taguchi 2003, Bosman 2007)

Let π : Gal $(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \mathsf{PGL}_2(\mathbb{F}_\ell)$ be an irreducible projective Galois representation such that $\pi(c)$ fixes exactly two points of $\mathbb{P}^1\mathbb{F}_\ell$. If the discriminant of the field corresponding to $\pi^{-1}([\overset{*}{0}, \overset{*}{*}])$ is of the form $\pm \ell^{\ell+k-2}$ for some $k \ge 3$, then there exists a newform $f \in S_k(1)$ and a prime $\mathfrak{l}|\ell$ such that $\pi \sim \rho_{f,\mathfrak{l}}^{\mathsf{proj}}$.

To make sure we have the right f, we use the fact that for prime $v \nmid \text{Disc}(F^{\text{proj}}(x))$,

$$\begin{aligned} a_v(f) \equiv 0 \mod \mathfrak{l} & \iff \rho_{f,\mathfrak{l}}(\operatorname{Frob}_v) \text{ is of order } 2 \\ & \iff F^{\operatorname{proj}}(x) \mod v \text{ splits into linear or} \\ & \text{quadratic factors, and is not} \\ & \text{completely split.} \square \mathsf{v} \triangleleft \mathfrak{p} \triangleleft \mathfrak{p}$$

Later on, we will need to work on p-adic numbers instead of complex ones.

Later on, we will need to work on p-adic numbers instead of complex ones.

We fix a large prime $p \in \mathbb{N}$ such that the $F_i(x)$ are irreducible mod p, and we will work with the roots of the $F_i(x)$ in $\overline{\mathbb{Q}_p}$ from now on.

Later on, we will need to work on p-adic numbers instead of complex ones.

We fix a large prime $p \in \mathbb{N}$ such that the $F_i(x)$ are irreducible mod p, and we will work with the roots of the $F_i(x)$ in $\overline{\mathbb{Q}_p}$ from now on.

Unfortunately, we have thus thrown away the indexation of the roots. We will have to recover it at some point.

The higher Galois groups

For each $i \leq r$, let

- $K_i = \mathbb{Q}[x]/F_i(x)$ the root field of $F_i(x)$,
- L_i be the splitting field of $F_i(x)$,
- Z_i the set of *p*-adic roots of $F_i(x)$,
- and write $V_i = (\mathbb{F}_{\ell}^2 \{0\})/S_i$.

The higher Galois groups

For each $i \leq r$, let

- $K_i = \mathbb{Q}[x]/F_i(x)$ the root field of $F_i(x)$,
- L_i be the splitting field of $F_i(x)$,
- Z_i the set of *p*-adic roots of $F_i(x)$,
- and write $V_i = (\mathbb{F}_{\ell}^2 \{0\})/S_i$.

We want to find a compatible system of isomorphisms $Z_i \simeq V_i$ and $\operatorname{Gal}(L_i/\mathbb{Q}) \simeq \operatorname{GL}_2(\mathbb{F}_\ell)/S_i$.

The higher Galois groups

For each $i \leq r$, let

- $K_i = \mathbb{Q}[x]/F_i(x)$ the root field of $F_i(x)$,
- L_i be the splitting field of $F_i(x)$,
- Z_i the set of *p*-adic roots of $F_i(x)$,
- and write $V_i = (\mathbb{F}_{\ell}^2 \{0\})/S_i$.

We want to find a compatible system of isomorphisms $Z_i \simeq V_i$ and $\operatorname{Gal}(L_i/\mathbb{Q}) \simeq \operatorname{GL}_2(\mathbb{F}_\ell)/S_i$.

For now, all we know is that

$$\mathsf{Gal}(L_0/\mathbb{Q})\simeq\mathsf{PGL}_2(\mathbb{F}_\ell) \circlearrowright \mathbb{P}^1\mathbb{F}_\ell$$

We know that $K_{i+1} = K_i(\sqrt{\delta_i})$ is quadratic over K_i , and that L_i is the Galois closure of K_i .

We know that $K_{i+1} = K_i(\sqrt{\delta_i})$ is quadratic over K_i , and that L_i is the Galois closure of K_i .

It is reasonable to assume that $K_i = \mathbb{Q}(\delta_i) \simeq \mathbb{Q}[x]/d_i(x)$.

We know that $K_{i+1} = K_i(\sqrt{\delta_i})$ is quadratic over K_i , and that L_i is the Galois closure of K_i .

It is reasonable to assume that $K_i = \mathbb{Q}(\delta_i) \simeq \mathbb{Q}[x]/d_i(x)$.

 We can check that L_{i+1}/L_i is at most quadratic, by studying how

$$\operatorname{Res}_{y}\left(d_{i}(x^{2}y), d_{i}(y)\right) = \operatorname{Cst.} \prod_{\sigma(\delta_{i}) \neq \tau(\delta_{i})} \left(x^{2} - \frac{\sigma(\delta_{i})}{\tau(\delta_{i})}\right)$$

factors over subfields of $\mathbb{Q}(\mu_{\ell})$.

We know that $K_{i+1} = K_i(\sqrt{\delta_i})$ is quadratic over K_i , and that L_i is the Galois closure of K_i .

It is reasonable to assume that $K_i = \mathbb{Q}(\delta_i) \simeq \mathbb{Q}[x]/d_i(x)$.

 We can check that L_{i+1}/L_i is at most quadratic, by studying how

$$\mathsf{Res}_{y}\left(d_{i}(x^{2}y),d_{i}(y)\right) = \mathsf{Cst.}\prod_{\sigma(\delta_{i})\neq\tau(\delta_{i})}\left(x^{2}-\frac{\sigma(\delta_{i})}{\tau(\delta_{i})}\right)$$

factors over subfields of $\mathbb{Q}(\mu_{\ell})$.

• We can check that $L_{i+1} \neq L_i$ by finding a prime $v \in \mathbb{N}$ such that $F_i(x)$ splits completely mod v but $F_{i+1}(x)$ does not.

A classification theorem

Theorem (Quer, 1995)

Let $i \in \mathbb{N}$.

• $H^2(\operatorname{PGL}_2(\mathbb{F}_\ell), C_{2^i}) \simeq C_2 \times C_2$, so there are 4 central extensions

$$1 \longrightarrow C_{2^i} \longrightarrow \tilde{G} \longrightarrow \mathsf{PGL}_2(\mathbb{F}_\ell) \longrightarrow 1.$$

Write the corresponding normalised cocycles as $\beta_1 = 1$, β_{det} , β_+ and β_- , and the corresponding central extensions as $C_{2^i} \times PGL_2(\mathbb{F}_{\ell})$, $2^i_{det}PGL_2(\mathbb{F}_{\ell})$, $2^i_+PGL_2(\mathbb{F}_{\ell})$ and $2^i_-PGL_2(\mathbb{F}_{\ell})$.

A classification theorem

Theorem (Quer, 1995)

Let $i \in \mathbb{N}$.

• $H^2(\operatorname{PGL}_2(\mathbb{F}_\ell), C_{2^i}) \simeq C_2 \times C_2$, so there are 4 central extensions

$$1 \longrightarrow C_{2^i} \longrightarrow \tilde{G} \longrightarrow \mathsf{PGL}_2(\mathbb{F}_\ell) \longrightarrow 1.$$

Write the corresponding normalised cocycles as $\beta_1 = 1$, β_{det} , β_+ and β_- , and the corresponding central extensions as $C_{2^i} \times PGL_2(\mathbb{F}_{\ell})$, $2^i_{det}PGL_2(\mathbb{F}_{\ell})$, $2^i_+PGL_2(\mathbb{F}_{\ell})$ and $2^i_-PGL_2(\mathbb{F}_{\ell})$.

2 If i = 1, then for all $g \in PGL_2(\mathbb{F}_{\ell})$ of order exactly 2,

•
$$\beta_1(g,g)=1$$
,

•
$$eta_{\mathsf{det}}(g,g) = 1 \Longleftrightarrow g \in \mathsf{PSL}_2(\mathbb{F}_\ell)$$
,

•
$$\beta_+(g,g) = 1 \iff g \notin \mathsf{PSL}_2(\mathbb{F}_\ell),$$

•
$$\beta_{-}(g,g) = -1.$$

Theorem (Quer, 1995)

Let $i \in \mathbb{N}$.

H²(PGL₂(𝔽_ℓ), C_{2ⁱ}) ≃ C₂ × C₂.
 If *i* = 1, then for all *g* ∈ PGL₂(𝔽_ℓ) of order exactly 2
 •
$$β_1(g,g) = 1$$
,
 • $β_{det}(g,g) = 1 \iff g \in PSL_2(𝒴ℓ)$,
 • $β_+(g,g) = 1 \iff g \notin PSL_2(𝒴ℓ)$,
 • $β_-(g,g) = -1$.
 If *i* ≥ 2,
 • (C_{2ⁱ} × PGL₂(𝒴_ℓ))^{ab} ≃ C_{2ⁱ} × C₂,
 • (2ⁱ_{det}PGL₂(𝒴_ℓ))^{ab} ≃ C_{2ⁱ⁺¹},
 • (2ⁱ₄PGL₂(𝒴_ℓ))^{ab} ≃ C_{2ⁱ},

•
$$(2^{i}_{-}\mathsf{PGL}_{2}(\mathbb{F}_{\ell}))^{\mathsf{ab}} \simeq C_{2^{i-1}} \times C_{2}.$$

<ロ> <同> <同> < 回> < 回>

æ

A classification theorem

Theorem (Quer, 1995)

Let $i \in \mathbb{N}$.

• $H^2(\operatorname{PGL}_2(\mathbb{F}_\ell), C_{2^i}) \simeq C_2 \times C_2$, so there are 4 central extensions

$$1 \longrightarrow C_{2^i} \longrightarrow \tilde{G} \longrightarrow \mathsf{PGL}_2(\mathbb{F}_\ell) \longrightarrow 1.$$

Write the corresponding normalised cocycles as $\beta_1 = 1$, β_{det} , β_+ and β_- , and the corresponding central extensions as $C_{2^i} \times PGL_2(\mathbb{F}_{\ell})$, $2^i_{det}PGL_2(\mathbb{F}_{\ell})$, $2^i_+PGL_2(\mathbb{F}_{\ell})$ and $2^i_-PGL_2(\mathbb{F}_{\ell})$.

A classification theorem

Theorem (Quer, 1995)

Let $i \in \mathbb{N}$.

• $H^2(\operatorname{PGL}_2(\mathbb{F}_\ell), C_{2^i}) \simeq C_2 \times C_2$, so there are 4 central extensions

$$1 \longrightarrow C_{2^i} \longrightarrow \tilde{G} \longrightarrow \mathsf{PGL}_2(\mathbb{F}_\ell) \longrightarrow 1.$$

Write the corresponding normalised cocycles as $\beta_1 = 1$, β_{det} , β_+ and β_- , and the corresponding central extensions as $C_{2^i} \times PGL_2(\mathbb{F}_{\ell})$, $2^i_{det}PGL_2(\mathbb{F}_{\ell})$, $2^i_+PGL_2(\mathbb{F}_{\ell})$ and $2^i_-PGL_2(\mathbb{F}_{\ell})$.

2 If i = 1, then for all $g \in PGL_2(\mathbb{F}_{\ell})$ of order exactly 2,

•
$$\beta_1(g,g)=1$$
,

•
$$eta_{\mathsf{det}}(g,g) = 1 \Longleftrightarrow g \in \mathsf{PSL}_2(\mathbb{F}_\ell)$$
,

•
$$\beta_+(g,g) = 1 \iff g \notin \mathsf{PSL}_2(\mathbb{F}_\ell),$$

•
$$\beta_{-}(g,g) = -1.$$

Theorem (Quer, 1995)

Let $i \in \mathbb{N}$.

H²(PGL₂(𝔽_ℓ), C_{2ⁱ}) ≃ C₂ × C₂.
 If *i* = 1, then for all *g* ∈ PGL₂(𝔽_ℓ) of order exactly 2
 •
$$β_1(g,g) = 1$$
,
 • $β_{det}(g,g) = 1 \iff g \in PSL_2(𝒴ℓ)$,
 • $β_+(g,g) = 1 \iff g \notin PSL_2(𝒴ℓ)$,
 • $β_-(g,g) = -1$.
 If *i* ≥ 2,
 • (C_{2ⁱ} × PGL₂(𝒴_ℓ))^{ab} ≃ C_{2ⁱ} × C₂,
 • (2ⁱ_{det}PGL₂(𝒴_ℓ))^{ab} ≃ C_{2ⁱ⁺¹},
 • (2ⁱ₄PGL₂(𝒴_ℓ))^{ab} ≃ C_{2ⁱ},

•
$$(2^{i}_{-}\mathsf{PGL}_{2}(\mathbb{F}_{\ell}))^{\mathsf{ab}} \simeq C_{2^{i-1}} \times C_{2}.$$

<ロ> <同> <同> < 回> < 回>

æ

Lemma

Let $1 \longrightarrow C_2 \longrightarrow \tilde{G} \longrightarrow G \longrightarrow 1$ be an extension with normalised cocycle $\beta \in H^2(G, C_2)$, and let $g \in G$ of order 2. Then the lifts of g have order 2 if $\beta(g,g) = 1$, and order 4 else.

Lemma

Let $1 \longrightarrow C_2 \longrightarrow \tilde{G} \longrightarrow G \longrightarrow 1$ be an extension with normalised cocycle $\beta \in H^2(G, C_2)$, and let $g \in G$ of order 2. Then the lifts of g have order 2 if $\beta(g,g) = 1$, and order 4 else.

Thanks to the complex conjugation, we deduce that

$$\mathsf{Gal}(L_1/\mathbb{Q}) \simeq \left\{ egin{array}{ll} 2_{\mathsf{det}}\mathsf{PGL}_2(\mathbb{F}_\ell), & \ell \equiv 1 mod 4, \ 2_+\mathsf{PGL}_2(\mathbb{F}_\ell), & \ell \equiv -1 mod 4, \end{array}
ight.$$

Lemma

Let $1 \longrightarrow C_2 \longrightarrow \tilde{G} \longrightarrow G \longrightarrow 1$ be an extension with normalised cocycle $\beta \in H^2(G, C_2)$, and let $g \in G$ of order 2. Then the lifts of g have order 2 if $\beta(g,g) = 1$, and order 4 else.

Thanks to the complex conjugation, we deduce that

$$\mathsf{Gal}(L_1/\mathbb{Q}) \simeq \left\{ egin{array}{ll} 2_{\mathsf{det}}\mathsf{PGL}_2(\mathbb{F}_\ell), & \ell \equiv 1 mod 4, \ 2_+\mathsf{PGL}_2(\mathbb{F}_\ell), & \ell \equiv -1 mod 4, \end{array}
ight.$$

and that the same goes for $GL_2(\mathbb{F}_{\ell})/\mathbb{F}_{\ell}^{*2}$.

Lemma

Let $1 \longrightarrow C_2 \longrightarrow \tilde{G} \longrightarrow G \longrightarrow 1$ be an extension with normalised cocycle $\beta \in H^2(G, C_2)$, and let $g \in G$ of order 2. Then the lifts of g have order 2 if $\beta(g,g) = 1$, and order 4 else.

Lemma

Let $1 \longrightarrow C_2 \longrightarrow \tilde{G} \longrightarrow G \longrightarrow 1$ be an extension with normalised cocycle $\beta \in H^2(G, C_2)$, and let $g \in G$ of order 2. Then the lifts of g have order 2 if $\beta(g,g) = 1$, and order 4 else.

Thanks to the complex conjugation, we deduce that

$$\mathsf{Gal}(L_1/\mathbb{Q}) \simeq \left\{ egin{array}{ll} 2_{\mathsf{det}}\mathsf{PGL}_2(\mathbb{F}_\ell), & \ell \equiv 1 mod 4, \ 2_+\mathsf{PGL}_2(\mathbb{F}_\ell), & \ell \equiv -1 mod 4, \end{array}
ight.$$

Lemma

Let $1 \longrightarrow C_2 \longrightarrow \tilde{G} \longrightarrow G \longrightarrow 1$ be an extension with normalised cocycle $\beta \in H^2(G, C_2)$, and let $g \in G$ of order 2. Then the lifts of g have order 2 if $\beta(g,g) = 1$, and order 4 else.

Thanks to the complex conjugation, we deduce that

$$\mathsf{Gal}(L_1/\mathbb{Q}) \simeq \left\{ egin{array}{ll} 2_{\mathsf{det}}\mathsf{PGL}_2(\mathbb{F}_\ell), & \ell \equiv 1 mod 4, \ 2_+\mathsf{PGL}_2(\mathbb{F}_\ell), & \ell \equiv -1 mod 4, \end{array}
ight.$$

and that the same goes for $GL_2(\mathbb{F}_{\ell})/\mathbb{F}_{\ell}^{*2}$.

Since r = 1 when $\ell \equiv -1 \mod 4$, we now assume $\ell \equiv 1 \mod 4$.

-∢ ≣ ▶

Since r = 1 when $\ell \equiv -1 \mod 4$, we now assume $\ell \equiv 1 \mod 4$.

 $Gal(L_i/\mathbb{Q})$ is an extension of $Gal(L_{i-1}/\mathbb{Q})$ by C_2 . We prove by induction on *i* that it is an extension of $PGL_2(\mathbb{F}_{\ell})$ by C_{2^i} , and that this extension is central.

Since r = 1 when $\ell \equiv -1 \mod 4$, we now assume $\ell \equiv 1 \mod 4$.

 $Gal(L_i/\mathbb{Q})$ is an extension of $Gal(L_{i-1}/\mathbb{Q})$ by C_2 . We prove by induction on *i* that it is an extension of $PGL_2(\mathbb{F}_{\ell})$ by C_{2^i} , and that this extension is central.

We deduce from the abelianisations that

 $\operatorname{Gal}(L_r/\mathbb{Q}) \simeq \operatorname{GL}_2(\mathbb{F}_\ell)/S_r.$

Since r = 1 when $\ell \equiv -1 \mod 4$, we now assume $\ell \equiv 1 \mod 4$.

 $Gal(L_i/\mathbb{Q})$ is an extension of $Gal(L_{i-1}/\mathbb{Q})$ by C_2 . We prove by induction on *i* that it is an extension of $PGL_2(\mathbb{F}_{\ell})$ by C_{2^i} , and that this extension is central.

We deduce from the abelianisations that

 $\operatorname{Gal}(L_r/\mathbb{Q}) \simeq \operatorname{GL}_2(\mathbb{F}_\ell)/S_r.$

More generally, we see that

$$\mathsf{Gal}(L_i/\mathbb{Q})\simeq\mathsf{GL}_2(\mathbb{F}_\ell)/S_i\simeq 1$$

$$\begin{array}{ll} \mathsf{PGL}_2(\mathbb{F}_\ell), & i = 0, \\ 2^i_{\mathsf{det}} \mathsf{PGL}_2(\mathbb{F}_\ell), & 0 < i < r, \\ 2^i_+ \mathsf{PGL}_2(\mathbb{F}_\ell), & i = r. \end{array}$$

We now know that $\operatorname{Gal}(L_i/\mathbb{Q}) \simeq \operatorname{GL}_2(\mathbb{F}_\ell)/S_i$ as an abstract group, so we get Galois representations ϱ_i .

But is its action on the roots of $F_i(x)$ equivalent to $GL_2(\mathbb{F}_\ell)/S_i \circlearrowleft V_i$?

We now know that $\operatorname{Gal}(L_i/\mathbb{Q}) \simeq \operatorname{GL}_2(\mathbb{F}_\ell)/S_i$ as an abstract group, so we get Galois representations ϱ_i .

But is its action on the roots of $F_i(x)$ equivalent to $GL_2(\mathbb{F}_\ell)/S_i \bigcirc V_i$?

By construction, the image of the stabilizer of a root of $F_1(x)$ is conjugate to a subgroup of index 2 of $[* *]_{0*} < GL_2(\mathbb{F}_{\ell})/\mathbb{F}_{\ell}^{*2}$.

We now know that $\operatorname{Gal}(L_i/\mathbb{Q}) \simeq \operatorname{GL}_2(\mathbb{F}_\ell)/S_i$ as an abstract group, so we get Galois representations ϱ_i .

But is its action on the roots of $F_i(x)$ equivalent to $GL_2(\mathbb{F}_\ell)/S_i \bigcirc V_i$?

By construction, the image of the stabilizer of a root of $F_1(x)$ is conjugate to a subgroup of index 2 of $[* *]_{0*} < GL_2(\mathbb{F}_{\ell})/\mathbb{F}_{\ell}^{*2}$.

So it must be either

•
$$H_{\uparrow} = \{ \begin{bmatrix} x & * \\ 0 & * \end{bmatrix} \mid x \in \mathbb{F}_{\ell}^{*2} \}$$
, or
• $H_{\downarrow} = \{ \begin{bmatrix} x & * \\ 0 & y \end{bmatrix} \mid y \in \mathbb{F}_{\ell}^{*2} \}$, or
• $H_{\uparrow} = \{ \begin{bmatrix} x & * \\ 0 & y \end{bmatrix} \mid xy \in \mathbb{F}_{\ell}^{*2} \}$.

By construction, the image of the stabilizer of a root of $F_1(x)$ is conjugate to a subgroup of index 2 of $[* *]_{0*} < GL_2(\mathbb{F}_{\ell})/\mathbb{F}_{\ell}^{*2}$.

So it must be either

•
$$H_{\uparrow} = \{ \begin{bmatrix} x & * \\ 0 & * \end{bmatrix} \mid x \in \mathbb{F}_{\ell}^{*2} \}$$
, or
• $H_{\downarrow} = \{ \begin{bmatrix} x & * \\ 0 & y \end{bmatrix} \mid y \in \mathbb{F}_{\ell}^{*2} \}$, or
• $H_{\updownarrow} = \{ \begin{bmatrix} x & * \\ 0 & y \end{bmatrix} \mid xy \in \mathbb{F}_{\ell}^{*2} \}$.

But

$$\bigcap_{g} g \mathcal{H}_{\natural} g^{-1} \ni \left[\begin{smallmatrix} \epsilon & 0 \\ 0 & \epsilon \end{smallmatrix}\right] \neq 1$$

for $\epsilon \notin \mathbb{F}_{\ell}^{*2}$, so H_{\uparrow} corresponds to a non-faithful action of $\mathsf{GL}_2(\mathbb{F}_{\ell})/\mathbb{F}_{\ell}^{*2}$.

By construction, the image of the stabilizer of a root of $F_1(x)$ is conjugate to a subgroup of index 2 of $[* *]_{0*} < GL_2(\mathbb{F}_{\ell})/\mathbb{F}_{\ell}^{*2}$.

So it must be either

•
$$H_{\uparrow} = \left\{ \begin{bmatrix} x & * \\ 0 & * \end{bmatrix} \mid x \in \mathbb{F}_{\ell}^{*2} \right\}$$
, or
• $H_{\downarrow} = \left\{ \begin{bmatrix} * & * \\ 0 & y \end{bmatrix} \mid y \in \mathbb{F}_{\ell}^{*2} \right\}$, or
• $H_{\uparrow} = \left\{ \begin{bmatrix} x & * \\ 0 & y \end{bmatrix} \mid xy \in \mathbb{F}_{\ell}^{*2} \right\}$.

 H_{\uparrow} corresponds to a non-faithful action of $GL_2(\mathbb{F}_{\ell})/\mathbb{F}_{\ell}^{*2}$.

After twisting by the automorphism $A \mapsto \frac{1}{\det A}A$ which swaps H_{\uparrow} and H_{\downarrow} , we can suppose that the stabilizer is H_{\uparrow} .

Are the representations correct ?

Now we know that

$$\operatorname{\mathsf{Gal}}(F_i) = \operatorname{\mathsf{GL}}_2(\mathbb{F}_\ell)/S_i$$

in a compatible way, we get a compatible collection of representations

$$\varrho_i: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_2(\mathbb{F}_\ell)/S_i.$$

We want to show that

$$\rho_r \sim \rho_{f,\mathfrak{l}}^{S_r}.$$

We can index the *p*-adic roots of $F_0(x)$ by $\mathbb{P}^1\mathbb{F}_\ell$ thanks to our Galois group computation, and then compute

$$\varrho_0(\mathsf{Frob}_p) = \overline{\Phi} \in \mathsf{PGL}_2(\mathbb{F}_\ell)$$

by looking at $Frob_p$ acting on them.

We can index the *p*-adic roots of $F_0(x)$ by $\mathbb{P}^1\mathbb{F}_\ell$ thanks to our Galois group computation, and then compute

$$\varrho_0(\mathsf{Frob}_p) = \overline{\Phi} \in \mathsf{PGL}_2(\mathbb{F}_\ell)$$

by looking at $Frob_p$ acting on them.

So $\rho_r(\operatorname{Frob}_{\rho}) = \lambda \Phi \in \operatorname{GL}_2(\mathbb{F}_{\ell})/S_r$ for some unknown $\lambda \in \mathbb{F}_{\ell}^*/S_r$.

We can index the *p*-adic roots of $F_0(x)$ by $\mathbb{P}^1\mathbb{F}_\ell$ thanks to our Galois group computation, and then compute

$$\varrho_0(\mathsf{Frob}_p) = \overline{\Phi} \in \mathsf{PGL}_2(\mathbb{F}_\ell)$$

by looking at $Frob_p$ acting on them.

So $\varrho_r(\operatorname{Frob}_p) = \lambda \Phi \in \operatorname{GL}_2(\mathbb{F}_\ell)/S_r$ for some unknown $\lambda \in \mathbb{F}_\ell^*/S_r$.

Let $z \in Z_r$ be a root of $F_r(x)$. We find the corresponding root of $F_0(x)$, then the line $w \in \mathbb{P}^1 \mathbb{F}_\ell$ that indexes it, and we index z by a vector $v \in w$.

We can index the *p*-adic roots of $F_0(x)$ by $\mathbb{P}^1\mathbb{F}_\ell$ thanks to our Galois group computation, and then compute

$$\varrho_0(\mathsf{Frob}_p) = \overline{\Phi} \in \mathsf{PGL}_2(\mathbb{F}_\ell)$$

by looking at $Frob_p$ acting on them.

So $\varrho_r(\operatorname{Frob}_p) = \lambda \Phi \in \operatorname{GL}_2(\mathbb{F}_\ell)/S_r$ for some unknown $\lambda \in \mathbb{F}_\ell^*/S_r$.

Let $z \in Z_r$ be a root of $F_r(x)$. We find the corresponding root of $F_0(x)$, then the line $w \in \mathbb{P}^1 \mathbb{F}_\ell$ that indexes it, and we index z by a vector $v \in w$.

Then for each λ , we get a candidate indexation of Z_r by V_r :

 $\operatorname{Frob}_{p}^{n} z \leftrightarrow (\lambda \Phi)^{n} v.$

We can index the *p*-adic roots of $F_0(x)$ by $\mathbb{P}^1\mathbb{F}_\ell$ thanks to our Galois group computation, and then compute

$$\varrho_0(\mathsf{Frob}_p) = \overline{\Phi} \in \mathsf{PGL}_2(\mathbb{F}_\ell)$$

by looking at $Frob_p$ acting on them.

So $\varrho_r(\operatorname{Frob}_p) = \lambda \Phi \in \operatorname{GL}_2(\mathbb{F}_\ell)/S_r$ for some unknown $\lambda \in \mathbb{F}_\ell^*/S_r$.

Let $z \in Z_r$ be a root of $F_r(x)$. We find the corresponding root of $F_0(x)$, then the line $w \in \mathbb{P}^1 \mathbb{F}_\ell$ that indexes it, and we index z by a vector $v \in w$.

Then for each λ , we get a candidate indexation of Z_r by V_r :

$$\operatorname{Frob}_{p}^{n} z \leftrightarrow (\lambda \Phi)^{n} v.$$

For each of these, we compute one coefficient of one resolvent $\Gamma_C(x)$. All but one clash with archimedian bounds.

 $\varrho_r \sim \rho_{f,l}^{S_r}$

Since $\varrho_0 \sim \rho_{f,\mathfrak{l}}$, there exists a Galois character $\psi \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \mathbb{F}_{\ell}^*/S_r$ such that

 $\varrho_r \sim \psi \otimes \rho_{f,\mathfrak{l}}^{S_r}.$

э

 $\varrho_r \sim \rho_{f,l}^{S_r}$

Since $\varrho_0 \sim \rho_{f,\mathfrak{l}}$, there exists a Galois character $\psi \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \mathbb{F}_{\ell}^*/S_r$ such that

$$\varrho_{\mathsf{r}} \sim \psi \otimes \rho_{\mathsf{f},\mathfrak{l}}^{\mathsf{S}_{\mathsf{r}}}.$$

Because of the ramification, ψ must be a power of the cyclotomic character mod $\ell.$

 $\varrho_r \sim \rho_{ff}^{S_r}$

Since $\varrho_0 \sim \rho_{f,\mathfrak{l}}$, there exists a Galois character $\psi \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \mathbb{F}_{\ell}^*/S_r$ such that

 $\varrho_{\mathsf{r}} \sim \psi \otimes \rho_{\mathsf{f},\mathfrak{l}}^{\mathsf{S}_{\mathsf{r}}}.$

Because of the ramification, ψ must be a power of the cyclotomic character mod $\ell.$

We check that

$$\mathsf{Tr}\,arrho_r(\mathsf{Frob}_{v})\inig(a_v(f)\,\,\mathsf{mod}\,\,\mathfrak{l}ig)S_r$$

for some small $v \in \mathbb{N}$ such that $\langle v \rangle = \mathbb{F}_{\ell}^*$ and $a_v(f)
ot \equiv 0 \mod \mathfrak{l}$.

Examples of results

< ∃ >

Example: $\rho_{\Delta,29}$ (genus g = 22)

p	$ \rho_{\Delta,29}(\operatorname{Frob}_p) $ similar to	$ au(p) \mod 29$
$10^{1000} + 453$	$\left[\begin{array}{rrr} 0 & 5 \\ 1 & 21 \end{array}\right]$	21
$10^{1000} + 1357$	$\left[\begin{array}{rrr} 0 & 28 \\ 1 & 8 \end{array}\right]$	8
$10^{1000} + 2713$	$\left[\begin{array}{rrr} 0 & 9 \\ 1 & 11 \end{array}\right]$	11
$10^{1000} + 4351$	$\left[\begin{array}{rrr} 0 & 26 \\ 1 & 0 \end{array}\right]$	0
$10^{1000} + 5733$	$\left[\begin{array}{rrr} 20 & 0\\ 0 & 2\end{array}\right]$	22
10 ¹⁰⁰⁰ + 7383	$\left[\begin{array}{rrr} 19 & 0\\ 0 & 10 \end{array}\right]$	0
$10^{1000} + 10401$		

Nicolas Mascot

æ

Example: Lehmer's conjecture

Conjecture (Lehmer, 1947)

For all $n \ge 1$, $\tau(n) \ne 0$.

- A 🗄 🕨

Example: Lehmer's conjecture

Conjecture (Lehmer, 1947)

For all $n \ge 1$, $\tau(n) \ne 0$.

Improvement of previous results (Bosman 2007):

p	$ \rho_{\Delta,29}(\operatorname{Frob}_p) $ similar to	$\tau(p) \mod 29$
22798241520242687999	$\left[\begin{array}{rrr} 0 & 26 \\ 1 & 3 \end{array}\right]$	3
60707199950936063999	$\left[\begin{array}{rrr} 0 & 19 \\ 1 & 9 \end{array}\right]$	9
93433753964906495999	$\left[\begin{array}{rrr} 0 & 14 \\ 1 & 4 \end{array}\right]$	4
102797608484376575999	$\left[\begin{array}{rrr} 0 & 23 \\ 1 & 4 \end{array}\right]$	4 => (=> =)9

Example: $\rho_{f_{24},31}$ (genus g = 26)

$$egin{aligned} f_{24} &= \sum_{n=1}^\infty au_{24}(n) q^n \in \mathcal{S}_{24}(1), \ & au_{24}(n) \in \mathcal{K}_{f_{24}} = \mathbb{Q}(lpha), \quad lpha &= rac{1+\sqrt{144169}}{2}. \end{aligned}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Example: $ho_{f_{24},31}$ (genus g=26)

p	$\rho_{f_{24},\mathfrak{l}_5}(Frob_p)$	$\rho_{f_{24},\mathfrak{l}_{27}}(Frob_p)$	$ au_{24}(p) \mod 31\mathbb{Z}[lpha]$
$10^{1000} + 453$	$\left[\begin{array}{rrr} 0 & 10 \\ 1 & 5 \end{array}\right]$	$\left[\begin{array}{rrr} 20 & 0 \\ 0 & 15 \end{array}\right]$	$1+7\alpha$
$10^{1000} + 1357$	$\left[\begin{array}{rrr} 18 & 0\\ 0 & 3 \end{array}\right]$	$\left[\begin{array}{rrr} 25 & 0\\ 0 & 22 \end{array}\right]$	1+4lpha
$10^{1000} + 2713$	$\left[\begin{array}{rrr} 24 & 0\\ 0 & 2 \end{array}\right]$	$\left[\begin{array}{rrr} 29 & 0\\ 0 & 7 \end{array}\right]$	4+23lpha
$10^{1000} + 4351$	$\left[\begin{array}{rrr} 17 & 0\\ 0 & 13 \end{array}\right]$	$\left[\begin{array}{rrr} 11 & 0\\ 0 & 6\end{array}\right]$	9+29lpha
$10^{1000} + 5733$	$\left[\begin{array}{rrr} 19 & 0\\ 0 & 12 \end{array}\right]$	$\left[\begin{array}{rrr} 15 & 0\\ 0 & 9\end{array}\right]$	3+18lpha
$10^{1000} + 7383$	$\left[\begin{array}{rrr} 0 & 17 \\ 1 & 27 \end{array}\right]$	$\left[\begin{array}{rrr} 7 & 0 \\ 0 & 2 \end{array}\right]$	$17 + 2\alpha$
$10^{1000} + 10401$	$\left[\begin{array}{rrr} 22 & 0\\ 0 & 5 \end{array}\right]$	$\left[\begin{array}{cc} 0 & 14 \\ 1 & 7 \end{array}\right]_{\Box}$	9+16a

Nicolas Mascot

Computing modular Galois representations

Thank you !

э

-

- ∢ ≣ ▶