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The modular curve X1(N)

For N ∈ N, let

Γ1(N) = {γ ∈ SL2(Z) | γ ≡ [ 1 ∗
0 1 ] mod N} .

Let H• = H ∪Q ∪ {∞}. Then Γ1(N)\H• is a compact
Riemann surface
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The modular curve X1(N)

For N ∈ N, let

Γ1(N) = {γ ∈ SL2(Z) | γ ≡ [ 1 ∗
0 1 ] mod N} .

Let H• = H ∪Q ∪ {∞}. Then Γ1(N)\H• is a compact
Riemann surface, which is the set of C-points of a nonsingular,
complete algebraic curve X1(N) defined over Q and which has
good reduction away from N .

We call its Jacobian J1(N).
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Hecke operators

Let α =
[

1 0
0 p

]
where p ∈ N is prime, and Γ = Γ1(N). The

correspondence

(Γ ∩ α−1Γα)\H•

����

∼
α

// (αΓα−1 ∩ Γ)\H•

����
X1(N)

////
Tp

// X1(N)

extends to an operator on J1(N). We let T be the ring
generated by these operators for p ∈ N prime.

Besides, let Γ0(N) = {γ ∈ SL2(Z) | γ ≡ [ ∗ ∗0 ∗ ] mod N}. Then
Γ0(N)/Γ1(N) ' (Z/NZ)∗ by [ a b

c d ] 7→ d mod N , whence
operators 〈d〉 for d ∈ (Z/NZ)∗. Actually 〈d〉 ∈ T.
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Newforms

Let Nk

(
Γ1(N)

)
⊂ Sk

(
Γ1(N)

)
be the finite set of newforms.

For all f = q +
∑

n>2 anq
n ∈ Nk

(
Γ1(N)

)
,

∀p ∈ N, Tpf = apf ,

so that
Kf = Q(a2, a3, · · · )

is actually a number field. Also, there exists

εf : (Z/NZ)∗ −→ K ∗f

such that
〈d〉f = εf (d)f .

For all σ ∈ Aut(Q),

f σ = q +
∑
n>2

σ(an)qn ∈ Nk

(
Γ1(N)

)
and Kf σ = Kσ

f , εf σ = σ ◦ εf .
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(
Γ1(N)

)
be the finite set of newforms.

Whenever M | N , we have

Nk

(
Γ1(M)

) � � //
� � //
� � // Sk

(
Γ1(N)
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M

)
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Modular Galois representations

Let f = q +
+∞∑
n=2

anq
n ∈ Nk

(
Γ1(N)

)
, k > 2.

Pick a prime l of Kf lying over ` ∈ N, and let Kf ,l be the
l-adic completion of Kf .

Application (Couveignes, Edixhoven, 2006)

ρf ,l can be computed in time polynomial in `, and ap mod l in
time polynomial in log p.

Goal: compute ρf ,l.
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Let f = q +
+∞∑
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anq
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(
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)
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Motivation

The Galois representation itself,

The field L = QKer ρf ,l
is a Galois number field, with

Galois group (almost) GL2(Fl), whose ramification
behaviour is well-understood
 Inverse Galois problem for GL2 and PGL2, Gross’s
problem, construction of very lightly ramified fields,

Fast computation of Fourier coefficients: computation of
ap mod l = Tr ρf ,l(Frobp) in time (log p)2+ε(p).
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Example 1

Theorem (M.)

The field cut out by ρ∆,31 is the field generated by the
31st roots of unity and by the roots of

x64 − 21 x63 + 118 x62 + 527 x61 − 8587 x60 + 18383 x59 + 263035 x58 − 2095879 x57 + 2416016 x56 + 44283128 x55 − 240474192 x54

+84687350 x53 + 3638349286 x52 − 12617823980 x51 − 10297265505 x50 + 155175311479 x49 − 196432825560 x48 − 771645455342 x47

+1482783472303 x46 + 2641351695834 x45 + 4650870173875 x44 − 45480241563019 x43 − 54597672402738 x42 + 501026042999912 x41

−496541492329624 x40 − 712343608491160 x39 + 5302741451178477 x38 − 30548025690548139 x37 + 34878663423629056 x36

+288784532405339724 x35 − 874206875792459963 x34 − 825384106177640249 x33 + 6958723996166230970 x32

−4535708640900181166 x31 − 30017821501048367756 x30 + 56583574288118086410 x29 + 60507682456797414358 x28

−278043951776326798765 x27 + 87013091280485835964 x26 + 765685764124853689529 x25 − 1039521490897195574873 x24

−857609563094973739451 x23 + 3508677503532089909529 x22 − 2261986657658172377618 x21 − 5701736296366236274465 x20

+13022859322612898456054 x19 − 641003473636730532862 x18 − 29939230256003209147601 x17 + 25447129369769267020402 x16

+36125137963345226955671 x15 − 55314588133331740131989 x14 − 18703775559594899286772 x13 + 43941206930666596631797 x12

+17651378415866112635127 x11 + 10928239966752626190216 x10 − 81873964056071560411072 x9 − 14246438965830190561265 x8

+128298548281018972743749 x7 − 50060167623901195766317 x6 − 45764538130200829948820 x5 + 18800719945150143916844 x4

−8179472634137717244072 x3 + 62290435026572905701979 x2 − 71710139962834196823306 x + 25842211492123062583556.

(several CPU years).
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Example 1

Theorem (M.)

The field cut out by ρ∆,31 is the field generated by the
31st roots of unity and by the roots of x64 − 21 x63 + · · · .
We have the following values:

p ρ∆,31(Frobp) similar to τ(p) mod 31

101000 + 453
[

30 0
0 20

]
19

101000 + 1357
[

0 2
1 13

]
13

101000 + 4351
[

4 1
0 4

]
8

(30s of CPU time per p).
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Example 2

Theorem (M.)

Let f = q + 2q2 − 4q3 + O(q4) ∈ N6

(
Γ0(5)

)
.

The field cut out by the projective representation attached to
f mod 13 is the field generated by the roots of
x14 − x13 − 26x11 + 39x10 + 104x9 − 299x8 − 195x7 + 676x6 + 481x5 − 156x4 − 39x3 + 65x2 − 14x + 1.

This polynomial and this field were not known before. Its root
discriminant is 47.816 · · · , whereas the next best known
example has root discriminant 69.939 · · · .

Conjecture (Roberts, M.)

This field is the one that has the smallest discriminant among
all the Galois number fields with Galois group PGL2(F13).
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Explicit construction of
the representation
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The Tate module of J1(N)

When A is an Abelian variety over Q of dimension g , define

Ta` A = lim←−
n∈N

A[`n],

a free Z`-module of rank 2g , and

V`A = Ta` A⊗Z Q = Ta` A⊗Z` Q`.

The action of Galois yields a representation

RA,` : GQ −→ GL2g (Q`)

which is unramified away from ` and the primes of bad
reduction of A.

Take now A = J1(N). Then V`J1(N) is actually a free
(T⊗Q`)-module of rank 2, whence

RJ1(N),` : GQ −→ GL2(T⊗Q`)

unramified away from `N .

For p - `N , the characteristic polynomial of the image of Frobp

is
X2 − TpX + p〈p〉 ∈ (T⊗Q`)[X ].
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Modular Abelian varieties

For f ∈ N2

(
Γ1(N)

)
, let

If = {T ∈ T |Tf = 0},

and define
Af = J1(N)/If J1(N).

Properties

If σ = If , so Af σ = Af .

Af is a simple Abelian variety defined over Q.

dimAf = [Kf : Q].

Kf ↪→ End(Af )⊗Q via ap 7→ Tp, εf (d) 7→ 〈d〉.
Indeed, Kf ' (T/If )⊗Q.

L(Af , s) =
∏
σ

L(f σ, s)
def
=
∏
σ

∑
n>1

σ(an)

ns
.
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The decomposition of J1(N)

Over Q, J1(N) is isogenous to∏
M|N

∏
f ∈GQ\N2

(
Γ1(M)

)Aσ0(N/M)
f .

So
V`J1(N) '

∏
M|N

∏
f ∈GQ\N2

(
Γ1(M)

)(V`Af )σ0(N/M)

as GQ-modules.
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The decomposition of J1(N)

Example: N = 22

S2

(
Γ1(1)

)
= S2

(
Γ1(2)

)
= 0.

At level 11, we have one rational newform
f11 = q − 2q2 − q3 + O(q4).

At level 22, the newforms are
f22 = q + ζ5q

2 + (ζ3
5 − ζ5 − 1)q3 + O(q4)

and its Galois conjugates.

 S2

(
Γ1(22)

)
= 〈f11(τ), f11(2τ)〉︸ ︷︷ ︸

Old

⊕〈Galois conjugates of f22〉︸ ︷︷ ︸
New

,

J1(22) ∼ A2
f11
× Af22 .

Af11 is the elliptic curve of conductor 11; Af22 is a simple
Abelian variety of dimension 4.
So genus

(
X1(22)

)
= 6.
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Recovering the modular representations

V`Af is a Q`-vector space of dimension 2[Kf : Q], and actually
a free Kf ⊗Q`-module of rank 2.

As Kf ⊗Q` '
∏

l|` Kf ,l, we recover the representations

Rf ,l : GQ −→ GL2(Kf ,l)

inside V`Af ⊂ V`J1(N).

In particular, if l is of degree 1, ρf ,l is afforded by

Vf ,l =
⋂
p

Ker
(
Tp|J1(N)[`] − ap(f ) mod l

)
⊂ J1(N)[`].
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Weight lowering

Weight-lowering theorem

Suppose ` > 5 and ` - N , and let f ∈ Nk

(
Γ1(N)

)
be a

newform of weight 3 6 k 6 `. There exists a newform
f2 ∈ N2

(
Γ1(`N)

)
of weight 2 and a prime l2 | ` of Kf2 such that

f mod l = f2 mod l2.

Thus ρf2,l2 ' ρf ,l, so that we can use the same geometric
construction again. We now find ρf ,l in J1(`N)[`].

Example

Take f = ∆ ∈ N12

(
Γ1(1)

)
. If ` > 13, there exists

f2 ∈ N2

(
Γ1(`)

)
, l2 ⊂ Kf2

such that

f2 mod l2 = ∆ mod ` in F`[[q]],

so that ρ∆,` is afforded in J1(`)[`].
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Weight lowering
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The modular curve XH(`N)

The condition
f mod l = f2 mod l2

implies that

∀x , εf2(x) mod l2 = xk−2εf (x).

ρf ,l actually occurs in the Jacobian of the modular curve
XH(`N) attached to

ΓH(`N) =
{

[ a b
c d ] ∈ Γ0(`N)

∣∣ d ∈ H
}

where H = Ker(εf2 mod l2) 6 (Z/`NZ)∗.

The genus of this curve is sometimes much smaller than that
of X1(`N).

Nicolas Mascot Computing modular Galois representations



Computing in
the modular Jacobian
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Divisors on curves

Let X be a proper, nonsingular, absolutely integral curve of
genus g over a field K .

A divisor on X is a formal Z-linear combination of points of X .

The degree of
∑

P∈X nPP is
∑

P∈X nP ∈ Z.

Divisors of degree 0 form a subgroup Div0(X ) of the group
Div(X ) of divisors on X .

A divisor is principal if it is the divisor (f ) of a function
f ∈ K (X )∗. Principal divisors form a subgroup Ppal(X ) of
Div0(X ).

We define Pic0(X ) = Div0(X )/Ppal(X ).

We have
Pic0(X )(L) ' Jac(X )(L)

for all extensions L of K .
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The Abel-Jacobi map

Assume that K = C, and let ω1, · · · , ωg be a basis of
holomorphic differentials on X .

A period is a vector

λ =

∫
γ

(ωi)i=1···g ∈ Cg

where γ is a loop on X .
Peridods forms a lattice Λ ∈ Cg , and Jac(X )(C) ' Cg/Λ.

If we fix O ∈ X , we can define

O : X −→ Cg/Λ

P 7−→
∫ P

O

(ωi)i=1···g ,

extend it additively to Div(X ), and restrict it to

 : Div0(X ) −→ Cg/Λ∑
n

(P ′n − Pn) 7−→
∑
n

∫ P′n

Pn

(ωi)i=1···g

which no longer depends on O and whose kernel is exactly
Ppal(X ), whence

 : Pic0(X )
∼−→ Cg/Λ = Jac(X ).
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Makdisi’s algorithms: basic blocks

When D ∈ Div(X ), write

H0(D) = {f ∈ K (X )∗ |(f ) + D > 0} ∪ {0}.

Lemma (Basic blocks)

If degD1, degD2 > 2g + 1, then the multiplication map

H0(D1)⊗ H0(D2) −→ H0(D1 + D2)

is surjective.

f · H0(D) = H0
(
D − (f )

)
.

If degD1 > 2g , then

H0(D2 − D1) = {f ∈ K (X ) | f · H0(D1) ⊂ H0(D2)}.
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Makdisi’s algorithms: representation of elements

Fix a divisor D0 on X of degree d0 > 2g + 1, and let

V = H0(3D0), V2 = H0(6D0),

whose elements are represented by multipoint evaluation, or
Taylor series (or both !)

A point x ∈ Jac(X ) = Pic0(X ) ↔ the subspace

WDx = V (−Dx) = H0(3D0 − Dx) ⊂ V ,

where Dx > 0 is a divisor of degree d0 such that

[Dx − D0] = x .

Dx is not unique !
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Makdisi’s algorithms: group law

Let WD1 , WD2 represent two points x1, x2 ∈ Jac(X ).

1 Compute H0(6D0 − D1 − D2) = WD1 ·WD2 .

2 Compute
H0(3D0−D1−D2) = {f ∈ V | f ·V ⊂ H0(6D0−D1−D2)}.

3 Take s ∈ H0(3D0 − D1 − D2), so that

(s) = −3D0 + D1 + D2 + D3, some D3 > 0.

Compute H0(6D0 − D1 − D2 − D3) = s · V .

4 Compute WD3 = H0(3D0 − D3)

= {f ∈ V | f ·H0(3D0−D1−D2) ⊂ H0(6D0−D1−D2−D3)}.

Then WD3 represents x3 ∈ Jac(X ) such that x1 + x2 + x3 = 0.
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Makdisi’s algorithms on the modular curve

Let f0 ∈ S2

(
Γ1(`N)

)
be defined over Q.

We take D0 = (f0) + c1 + c2 + c3, where the ci are cusps such
that

∑
ci is defined over Q.

 H0(D0) ' S2

(
Γ1(`N)

)
⊕ 〈E1,2,E1,3〉 ⊂ M2

(
Γ1(`N)

)
,

where E1,i is an Eisenstein series of weight 2 that vanishes at
all the cusps except c1 and ci .

We represent these forms by their q-expansion at all cusps.

We then compute V = H0(3D0) ⊂M6

(
Γ1(`N)

)
by

multiplication.
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Computation of
the representation
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Assumptions

From now on, we assume that f ∈ Nk

(
Γ1(N)

)
and l ⊂ Kf are

such that

deg l = 1,

` - N and k 6 `,

Im ρf ,l ⊃ SL2(Fl).
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How does one compute such a representation ?

In order to compute ρf ,l, we first compute the number field

L = QKer ρf ,l
= Q(x , x ∈ Vf ,l)

that it cuts out, and then the image of the Frobenius elements.

If we were dealing with an elliptic curve, we could simply
compute the division polynomial Φ` ∈ Q[X ].

But we are dealing with the Jacobian J1(`), so this
approach is intractable.
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The analytic model comes in handy

In the elliptic curve case:

Algebraic model Analytic model

y2 = x3 + ax + b

Abel-Jacobi 

P 7→
∫ P
∞

dx
y

##
C/(Z⊕ Zτ)

(℘τ ;℘′
τ )

cc
(Weierstrass) Easy torsion

In the modular case, we work with divisors instead of points.

Algebraic model Analytic model

Div0
(
X1(`N)

)
Abel-Jacobi 

$$
J1(`N)(C) = Cg/Λdd

Easy to evaluate Easy torsion[∑g
i=1 Pi − gO

]
7→
∑g

i=1 ξ(Pi )

There is no ℘, so we must invert  “by hand”.
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Strategy

Goal: compute Vf ,l ⊂ J1(`N)[`].

1 Period lattice Λ of X1(`N)
High accuracy q-expansions, term-by-term integration

 analytic model of J1(`N)

2 Approximation over C of the `-torsion
Computation of divisors D1, D2 ∈ Div0

(
X1(`N)

)
representing a basis of

Vf ,l ⊂ J1(`N)[`]

3 Evaluation of the `-torsion
Choice of a “well-behaved” function α : Vf ,l −→ Q

 number field L cut out by ρf ,l

4 Frobenius elements
Recipe to compute the image of the Frobenius at p, given p - `N
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Step 1

I Period lattice Λ of X1(`N)
High accuracy q-expansions, term-by-term integration

 analytic model of J1(`N)

Approximation over C of the `-torsion
Computation of divisors D1, D2 ∈ Div0

(
X1(`N)

)
representing a basis of

Vf ,l ⊂ J1(`N)[`]

Evaluation of the `-torsion
Choice of a “well-behaved” function α : Vf ,l −→ Q

 number field L cut out by ρf ,l

Frobenius elements
Recipe to compute the image of the Frobenius at p, given p - `N
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Periods of the modular curve X1(`N)

These curves can be represented by modular symbols
S2

(
Γ1(`N)

)
⊂M2

(
Γ1(`N)

)
.
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Periods of the modular curve X1(`N)

Analytic model of J1(`N)

Let ω1, · · · , ωg be a basis of Ω1
(
X1(`N)

)
' S2

(
Γ1(`N)

)
.

Integrate the differentials ωi(τ)dτ along the curves γj . This

yields a lattice Λ =

〈(∫
γj
ωi

)
16i6g

〉
16j62g

⊂ Cg , and

J1(`) = Cg/Λ.

These curves can be represented by modular symbols
S2

(
Γ1(`N)

)
⊂M2

(
Γ1(`N)

)
.
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Explicit integration

Split the integration path, move the endpoints to ∞.
 integrals of the form∫ z

∞

(
+∞∑
n=1

ωne
2πinτ

)
dτ =

1

2πi

+∞∑
n=1

ωn

n
e2πinz ,

which converge best for Im z � 0.
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Using the Hecke-module structure

T also acts on modular symols, and integration is equivariant:∫
Tw

ω =

∫
w

Tω.

So, if we have a T-generating family of symbols (wi) which are
easy to integrate along, we can compute the periods:

γj =
∑
i

Tj ,iwi , Tj ,i ∈ T,

∫
γj

ω =

∫
∑

i Tj,iwi

ω =
∑
i

∫
wi

Tj ,iω =
∑
i

λ(Tj ,i , ω)

∫
wi

ω.
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High precision q-expansions

Let ω =
+∞∑
n=0

ωnq
n ∈ S2

(
Γ1(`N)

)
, and let B ∈ N.

Theorem (Manin, 1972)

Using modular symbols, the ωn can be computed for n 6 B in
a number of bit operations which is polynomial (but at least
quadratic) in B .

Theorem (M., 2013)

The ωn can be computed for n 6 B in Õ(B) bit operations.
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High precision q-expansions

Let ω =
+∞∑
n=0

ωnq
n ∈ S2

(
Γ1(`N)

)
, and let B ∈ N.

1 Bounds are known on the ωn  we compute ωn mod p,
with p | p a large enough prime.

2 We use u =
1

j
=

E 3
4 − E 2

6

1728 E 3
4

=
+∞∑
n=1

unq
n, the un are easy to

compute mod p.

3 There is an equation Φ(X ,Y ) ∈ Fp[X ,Y ] with known
degrees such that Φ(u, ω/du) = 0.

4 We compute Φ by identification in Fp[[q]].

5 From precomputed un for n 6 B , we compute ω by
Newton-iterating on Φ(u, ω/du) = 0.
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5 From precomputed un for n 6 B , we compute ω by
Newton-iterating on Φ(u, ω/du) = 0.
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Step 2

X Period lattice Λ of X1(`N)
High accuracy q-expansions, term-by-term integration

 analytic model of J1(`N)

I Approximation over C of the `-torsion
Computation of divisors D1, D2 ∈ Div0

(
X1(`N)

)
representing a basis of

Vf ,l ⊂ J1(`N)

Evaluation of the `-torsion
Choice of a “well-behaved” function α : Vf ,l −→ Q

 number field L cut out by ρf ,l

Frobenius elements
Recipe to compute the image of the Frobenius at p, given p - `N
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The setup

Vf ,l
def
=

⋂
p prime

Ker
(
Tp − ap

)∣∣
J1(`N)[`]

=
⋂
p6B

Ker
(
Tp − ap

)∣∣
J1(`N)[`]

for B large enough.

The matrices of Tp 	 J1(`N)[`] allow us to find

x1, x2 ∈ J1(`N)[`](C) = (Cg/Λ)[`] =
1

`
Λ/Λ

which form a basis of Vf ,l ⊂ J1(`N)[`].

Goal: compute D1, D2 ∈ Div0
(
X1(`N)(C)

)
such that

[Dk ] = xk .
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Abel-Jacobi and Newton

We have a target x ∈ Cg/Λ, we want



(∑
n

(
P ′n − Pn

)) def
=
∑
n

(∫ P′n

Pn

ωi

)
16i6g

= x .

Fix g points P1, · · · ,Pg ∈ X1(`N)(C), and solve for
P ′1, · · · ,P ′g by Newton iteration in Cg .

Poor precision, and likely to diverge...
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Abel-Jacobi and Newton

We have a target x ∈ Cg/Λ, we want



(
g∑

n=1

(
P ′(m)

n − P (m)
n

)) def
=

g∑
n=1

(∫ P′
(m)
n

P
(m)
n

ωi

)
16i6g

=
x

2m

Fix g points P
(m)
1 , · · · ,P (m)

g ∈ X1(`N)(C), and solve for

P ′
(m)
1 , · · · ,P ′(m)

g by Newton iteration in Cg .

Poor precision, and likely to diverge...
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n − P (m)
n

)) def
=

g∑
n=1

(∫ P′
(m)
n

P
(m)
n

ωi

)
16i6g

=
x

2m

Fix g points P
(m)
1 , · · · ,P (m)

g ∈ X1(`N)(C), and solve for

P ′
(m)
1 , · · · ,P ′(m)

g by Newton iteration in Cg .

Poor precision, and likely to diverge...

Proposition (Inverse function theorem)

If m� 0, then for generic P
(m)
1 , · · · ,P (m)

1 , then Newton

converges to a solution with P
′(m)
i close to P

(m)
i , 1 6 i 6 g .
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Recovering `-torsion divisors

[D] = 2m[D(m)] =

[
g∑

n=1

2m
(
P ′n − Pn

)]
∈ J1(`N)[`].

 Use Makdisi’s algorithms to double [D(m)] repeatedly.
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Step 3

X Period lattice Λ of X1(`N)
High accuracy q-expansions, term-by-term integration

 analytic model of J1(`N)

X Approximation over C of the `-torsion
Computation of divisors D1, D2 ∈ Div0

(
X1(`N)

)
representing a basis of

Vf ,l ⊂ J1(`N)

I Evaluation of the `-torsion
Choice of a “well-behaved” function α : Vf ,l −→ Q

 number field L cut out by ρf ,l

Frobenius elements
Recipe to compute the image of the Frobenius at p, given p - `N
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Evaluating the `-torsion

We have computed divisors D1 and D2 representing a basis
of Vf ,l ⊂ J1(`N)[`].

Thanks to Makdisi’s algorithms, we compute F`-linear
combinations of D1 and D2

 divisors representing all the `2 points of Vf ,l.

Proposition

Let α ∈ Q
(
J1(`N)

)
, and let

F (x) =
∏

D∈Vf ,l

D 6=0

(
x − α(D)

)
.

Then F (x) ∈ Q[x ].

For generic α, F (x) is irreducible, and its decomposition field is

L = QKer ρf ,l
.
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Classical choice of α ∈ Q
(
J1(`N)

)
Pick ξ ∈ Q

(
X1(`N)

)
, and extend it to J1(`N) by

α : J1(`N) 99K C
g∑

i=1

Pi − gO 7−→
g∑

i=1

ξ(Pi)
.

The divisor of poles of α is

(α)∞ =
∑

Q pole of ξ

τ ∗[Q−O]Θ,

so ξ must be chosen with degree as small as possible.
Unfortunately,

Theorem (Abramovich, 1996)

deg ξ ' g .
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Better choice of α ∈ Q
(
J1(`N)

)
Points on J1(`N) can be written E − gO, E > 0 of degree g .
Fix an effective divisor B of degree 2g . Then

H0(B − E ) = CφE .

We can thus define

α : J1(`N) 99K C

E − gO 7−→ φE (P)

φE (Q)

where P , Q ∈ X1(`N)(Q) are fixed.
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Better choice of α ∈ Q
(
J1(`N)

)
H0(B − E ) = CφE .

We can thus define

α : J1(`N) 99K C

E − gO 7−→ φE (P)

φE (Q)

where P , Q ∈ X1(`N)(Q) are fixed.

Proposition (M., 2012)

The divisor of poles of α is the sum of only 2 translates of Θ.
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Step 4

X Period lattice Λ of X1(`N)
High accuracy q-expansions, term-by-term integration

 analytic model of J1(`N)

X Approximation over C of the `-torsion
Computation of divisors D1, D2 ∈ Div0

(
X1(`N)

)
representing a basis of

Vf ,l ⊂ J1(`N)

X Evaluation of the `-torsion
Choice of a “well-behaved” function α : Vf ,l −→ Q

 number field L cut out by ρf ,l

I Frobenius elements
Recipe to compute the image of the Frobenius at p, given p - `N
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Summary

We have computed F (x) ∈ Q[x ] with decomposition field

L = QKer ρf ,l
. We know the roots of F (x) in C with high

accuracy, and the permutation action of Gal(L/Q) ⊆ GL2(F`)
on them as well.

We must now compute

ρf ,l(Frobp)

for prime p ∈ N.

f = q +
∑
n>2

anq
n, Tr ρf ,l(Frobp) = ap mod l.

Nicolas Mascot Computing modular Galois representations



Summary

We have computed F (x) ∈ Q[x ] with decomposition field

L = QKer ρf ,l
. We know the roots of F (x) in C with high

accuracy, and the permutation action of Gal(L/Q) ⊆ GL2(F`)
on them as well.

We must now compute

ρf ,l(Frobp)

for prime p ∈ N.

f = q +
∑
n>2

anq
n, Tr ρf ,l(Frobp) = ap mod l.

Nicolas Mascot Computing modular Galois representations



Summary

We have computed F (x) ∈ Q[x ] with decomposition field

L = QKer ρf ,l
. We know the roots of F (x) in C with high

accuracy, and the permutation action of Gal(L/Q) ⊆ GL2(F`)
on them as well.

We must now compute

ρf ,l(Frobp)

for prime p ∈ N.

f = q +
∑
n>2

anq
n, Tr ρf ,l(Frobp) = ap mod l.

Nicolas Mascot Computing modular Galois representations



The Dokchitsers’ resolvents

Theorem (T. & V. Dokchitser, 2010)

Let F (x) ∈ Q[x ] be irreducible, n = deg F (x), L ⊂ C its
decomposition field, and ai ∈ C its roots.

For almost all h(x) ∈ Z[x ]n−1, the resolvents

ΓC (x) =
∏
σ∈C

(
x −

n∑
i=1

h(ai)σ(ai)

)
∈ Q[x ],

C conjugacy class of Gal(L/Q), are pairwise coprime.
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For almost all h(x) ∈ Z[x ]n−1, the resolvents
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σ∈C

(
x −

n∑
i=1

h(ai)σ(ai)

)
∈ Q[x ],

C conjugacy class of Gal(L/Q), are pairwise coprime.

For each prime p ∈ N such that F (x) is defined and squarefree
mod p, let

Fp[a] = Fp[x ]/
(
F (x) mod p

)
, u = TrFp [a]/Fp h(a)ap ∈ Fp.

Then Frobp ∈ C =⇒ ΓC (u) = 0 mod p.
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F (x) is HUGE

Problem

The degree of F (x) is large (≈ `2), and its coefficients are

huge, so the coefficients of ΓC (x) are huge`
2

.

There are algorithms to reduce a polynomial, that is to say
compute another polynomial defining the same number field.
But F (x) is simply too big for them.

Nicolas Mascot Computing modular Galois representations



The projective representation

Instead, we could consider the projective representation

ρproj : Gal(Q/Q)
ρf ,l−→ GL2(F`) −→ PGL2(F`).

This corresponds to

F proj(x) =
∏

w∈P1F`

x −
∑
D∈w
D 6=0

α(D)

 ∈ Q[X ],

which is of degree ` + 1 only, and can thus be reduced.
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Quotient representations

More generally, for S 6 F∗` embedded diagonally into GL2(F`),
we can consider

ρS : Gal(Q/Q)
ρf ,l−→ GL2(F`) −→ GL2(F`)/S .

Fact

Let A ∈ GL2(F`) such that we know its image in GL2(F`)/S
and detA. If −1 6∈ S , we can recover A.

As det ρf ,l = εχk−1
` is known, we consider

F∗` = S0 >
2
S1 >

2
· · · >

2
Sr 63 −1,

where r = ord2(`− 1), and the associated Fi(x) := F Si (x).

We now focus on Fr (x) instead of F (x).
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Reduction of the polynomials

First, we can reduce F0(x), whose degree is only ` + 1.

Then, we write Ki = Q[x ]/Fi(x), so that

Ki+1 = Ki(
√

∆i), ∆i ∈ Ki .

We can inductively reduce the Fi(x), by writing ∆i = A2
i δi in

Ki with δi small.
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The fields

The filtration

F∗` = S0 )
2
S1 )

2
· · · )

2
Sr = S 63 −1

yields a tower of quadratic extensions

L0 (
2
L1 (

2
· · · (

2
Lr ,

where Li = QKer ρ
Si
f ,l .

Proposition

L = Lr Ldet ρf ,l︸ ︷︷ ︸
⊆Q(ζM)

.
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Certification of the output
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Certification
We have identified the coefficients of

F (x) =
∏

D∈Vf ,l

D 6=0

(
x − α(D)

)
∈ Q[x ],

beyond reasonable doubt, but this is not rigorous.

Question

How do we certify that F (x) defines ρf ,l ?

For simplicity, we will assume that f and l are such that ` > 5,
N = 1, and that Im ρf ,l = GL2(F`).

We must prove that

1 GalQ(F ) 	 {α(D)} is permutation-isomorphic to
GL2(F`) 	 F`2 − {0},

2 the corresponding Galois representation % is ρf ,l
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F (x) =
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Question

How do we certify that F (x) defines ρf ,l ?

For simplicity, we will assume that f and l are such that ` > 5,
N = 1, and that Im ρf ,l = GL2(F`).

We must prove that
1 GalQ(F ) 	 {α(D)} is permutation-isomorphic to

GL2(F`) 	 F`2 − {0}
 compute GalQ(F ) with Magma,

2 the corresponding Galois representation % is ρf ,l
 use Serre’s modularity conjecture.
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Serre’s modularity conjecture

Theorem (Khare+Wintenberger, 2009)

Let c ∈ Gal(Q/Q) be the complex conjugation, and let

ρ : Gal(Q/Q) −→ GL2(F`)

be an irreducible Galois representation such that
det ρ(c) = −1. Then there exists a newform
f ∈ Skρ

(
Γ1(Nρ), ερ

)
and a prime l|` such that

ρ ∼ ρf ,l.

Moreover, there are explicit recipes to compute Nρ, kρ and ερ.
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Proof of the projective Galois group

Let x , y , z , t ∈ P1F` be pairwise distinct. Their cross-ratio is
by definition γ(t), where γ ∈ PGL2(F`) is the only element
sending (x , y , z) to (∞, 0, 1).

Proposition

Let γ be a permutation of P1F`. Then

γ preserves cross-ratios⇐⇒ γ ∈ PGL2(F`).

Let
(
βw =

∑
06=D∈w α(D)

)
w∈P1F`

be the roots of F proj(x), and

let λ1, · · · , λ4 be distinct integers. We compute

R4(x) =
∏

w1,··· ,w4
distinct

(
x −

4∑
m=1

λmβwm

)
∈ Z[x ].

If R4(x) is squarefree and factors along cross-ratios, this
proves that GalQ(F proj) 6 PGL2(F`).
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Proof of the projective Galois group

We can define the unordered cross-ratio map

u :
(P1(F`)

4

)
−→ F`

{x , y , z , t} 7−→ j([x , y , z , t])
,

where j(λ) = 256 (1−λ+λ2)3

λ2(1−λ)2 .

Theorem (M., 2016)

1 ∀` > 5, PGL2(F`) is a maximal subgroup of SP1(F`).

2 ∀` 6= 5, γ 	 P1(F`) preserves u ⇐⇒ γ ∈ PGL2(F`).

Instead of

R4(x) =
∏

w1,··· ,w4
distinct

(
x −

4∑
m=1

νmβwm

)
∈ Z[x ],

for ` 6= 5 we may use

R4,sym(x) =
∏

W∈(P1(F`)
4 )

(
x −

∑
w∈W

βw

)
∈ Z[X ]

whose degree is 24 times smaller.
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Proof of the projective representation

Theorem(Projective Serre) (Moon+Taguchi 2003, Bosman
2007)

Let π : Gal(Q/Q) −→ PGL2(F`) be an irreducible projective
Galois representation such that π(c) fixes exactly two points
of P1F`. If the discriminant of the field corresponding to
π−1 ([ ∗ ∗0 ∗ ]) is of the form ±``+k−2 for some k > 3, then there
exists a newform f ∈ Sk(1) and a prime l|` such that π ∼ ρproj

f ,l .

To make sure we have the right f , we use the fact that for
prime v - Disc

(
F proj(x)

)
,

av (f ) ≡ 0 mod l ⇐⇒ ρf ,l(Frobv ) is of order 2
⇐⇒ F proj(x) mod v splits into linear or

quadratic factors, and is not
completely split.
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Switching to p-adics

Later on, we will need to work on p-adic numbers instead of
complex ones.

We fix a large prime p ∈ N such that the Fi(x) are irreducible
mod p, and we will work with the roots of the Fi(x) in Qp

from now on.

Unfortunately, we have thus thrown away the indexation of the
roots. We will have to recover it at some point.
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The higher Galois groups

For each i 6 r , let

Ki = Q[x ]/Fi(x) the root field of Fi(x),

Li be the splitting field of Fi(x),

Zi the set of p-adic roots of Fi(x),

and write Vi = (F`2 − {0})/Si .

We want to find a compatible system of isomorphisms Zi ' Vi

and Gal(Li/Q) ' GL2(F`)/Si .

For now, all we know is that

Gal(L0/Q) ' PGL2(F`) � P1F`.
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The Galois closures are not too big

We know that Ki+1 = Ki(
√
δi) is quadratic over Ki , and that

Li is the Galois closure of Ki .

It is reasonable to assume that Ki = Q(δi) ' Q[x ]/di(x).

We can check that Li+1/Li is at most quadratic, by
studying how

Resy
(
di(x

2y), di(y)
)

= Cst.
∏

σ(δi )6=τ(δi )

(
x2 − σ(δi)

τ(δi)

)

factors over subfields of Q(µ`).

We can check that Li+1 6= Li by finding a prime v ∈ N
such that Fi(x) splits completely mod v but Fi+1(x) does
not.
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A classification theorem

Theorem (Quer, 1995)

Let i ∈ N.

1 H2
(

PGL2(F`),C2i
)
' C2 × C2 , so there are 4 central

extensions

1 −→ C2i −→ G̃ −→ PGL2(F`) −→ 1.

Write the corresponding normalised cocycles as β1 = 1,
βdet, β+ and β−, and the corresponding central extensions
as C2i × PGL2(F`), 2i

detPGL2(F`), 2i
+PGL2(F`) and

2i
−PGL2(F`).

2 If i = 1, then for all g ∈ PGL2(F`) of order exactly 2,

β1(g , g) = 1,
βdet(g , g) = 1⇐⇒ g ∈ PSL2(F`),
β+(g , g) = 1⇐⇒ g 6∈ PSL2(F`),
β−(g , g) = −1.
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Gal(L1/Q) ' GL2(F`)/F∗`
2

Lemma

Let 1 −→ C2 −→ G̃ −→ G −→ 1 be an extension with
normalised cocycle β ∈ H2(G ,C2), and let g ∈ G of order 2.
Then the lifts of g have order 2 if β(g , g) = 1, and order 4
else.

Thanks to the complex conjugation, we deduce that

Gal(L1/Q) '
{

2detPGL2(F`), ` ≡ 1 mod 4,
2+PGL2(F`), ` ≡ −1 mod 4,

and that the same goes for GL2(F`)/F∗`
2.
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Going up and down

Since r = 1 when ` ≡ −1 mod 4, we now assume
` ≡ 1 mod 4.

Gal(Li/Q) is an extension of Gal(Li−1/Q) by C2. We prove by
induction on i that it is an extension of PGL2(F`) by C2i , and
that this extension is central.

We deduce from the abelianisations that

Gal(Lr/Q) ' GL2(F`)/Sr .

More generally, we see that

Gal(Li/Q) ' GL2(F`)/Si '


PGL2(F`), i = 0,
2i

detPGL2(F`), 0 < i < r ,
2i

+PGL2(F`), i = r .
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The action of Galois

We now know that Gal(Li/Q) ' GL2(F`)/Si as an abstract
group, so we get Galois representations %i .

But is its action on the roots of Fi(x) equivalent to
GL2(F`)/Si 	 Vi ?

By construction, the image of the stabilizer of a root of F1(x)
is conjugate to a subgroup of index 2 of [ ∗ ∗0 ∗ ] < GL2(F`)/F∗`

2.

So it must be either
H↑ =

{
[ x ∗0 ∗ ] | x ∈ F∗`

2
}

, or

H↓ =
{

[ ∗ ∗0 y ] | y ∈ F∗`
2
}

, or

Hl =
{

[ x ∗0 y ] | xy ∈ F∗`
2
}

.

Hl corresponds to a non-faithful action of GL2(F`)/F∗`
2.

After twisting by the automorphism A 7→ 1
detA

A which swaps
H↑ and H↓, we can suppose that the stabilizer is H↑.
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Are the representations correct ?

Now we know that

Gal(Fi) = GL2(F`)/Si

in a compatible way, we get a compatible collection of
representations

%i : GQ −→ GL2(F`)/Si .

We want to show that

ρr ∼ ρSrf ,l.
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Recovering the indexation of the roots

We can index the p-adic roots of F0(x) by P1F` thanks to our
Galois group computation, and then compute

%0(Frobp) = Φ ∈ PGL2(F`)
by looking at Frobp acting on them.

So %r (Frobp) = λΦ ∈ GL2(F`)/Sr for some unknown
λ ∈ F∗`/Sr .

Let z ∈ Zr be a root of Fr (x). We find the corresponding root
of F0(x), then the line w ∈ P1F` that indexes it, and we index
z by a vector v ∈ w .

Then for each λ, we get a candidate indexation of Zr by Vr :

Frobn
p z ↔ (λΦ)nv .

For each of these, we compute one coefficient of one resolvent
ΓC (x). All but one clash with archimedian bounds.
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%r ∼ ρSrf ,l

Since %0 ∼ ρf ,l, there exists a Galois character
ψ : Gal(Q/Q) −→ F∗`/Sr such that

%r ∼ ψ ⊗ ρSrf ,l.

Because of the ramification, ψ must be a power of the
cyclotomic character mod `.

We check that

Tr %r (Frobv ) ∈
(
av (f ) mod l

)
Sr

for some small v ∈ N such that 〈v〉 = F∗` and av (f ) 6≡ 0 mod l.
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Examples of results
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Example: ρ∆,29 (genus g = 22)

p ρ∆,29(Frobp) similar to τ(p) mod 29

101000 + 453
[

0 5
1 21

]
21

101000 + 1357
[

0 28
1 8

]
8

101000 + 2713
[

0 9
1 11

]
11

101000 + 4351
[

0 26
1 0

]
0

101000 + 5733
[

20 0
0 2

]
22

101000 + 7383
[

19 0
0 10

]
0

101000 + 10401
[

7 0
0 2

]
9
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Example: Lehmer’s conjecture

Conjecture (Lehmer, 1947)

For all n > 1, τ(n) 6= 0.

Improvement of previous results (Bosman 2007):

p ρ∆,29(Frobp) similar to τ(p) mod 29

22798241520242687999
[

0 26
1 3

]
3

60707199950936063999
[

0 19
1 9

]
9

93433753964906495999
[

0 14
1 4

]
4

102797608484376575999
[

0 23
1 4

]
4
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Example: ρf24,31 (genus g = 26)

f24 =
∞∑
n=1

τ24(n)qn ∈ S24(1),

τ24(n) ∈ Kf24 = Q(α), α =
1 +
√

144169

2
.
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Example: ρf24,31 (genus g = 26)

p ρf24,l5(Frobp) ρf24,l27(Frobp) τ24(p) mod 31Z[α]

101000 + 453
[

0 10
1 5

] [
20 0
0 15

]
1 + 7α

101000 + 1357
[

18 0
0 3

] [
25 0
0 22

]
1 + 4α

101000 + 2713
[

24 0
0 2

] [
29 0
0 7

]
4 + 23α

101000 + 4351
[

17 0
0 13

] [
11 0
0 6

]
9 + 29α

101000 + 5733
[

19 0
0 12

] [
15 0
0 9

]
3 + 18α

101000 + 7383
[

0 17
1 27

] [
7 0
0 2

]
17 + 2α

101000 + 10401
[

22 0
0 5

] [
0 14
1 7

]
9 + 16α
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Thank you !
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